Loading…
Single molecule studies characterize the kinetic mechanism of tetrameric p53 binding to different native response elements
The transcriptional activator p53 is a tumor suppressor protein that controls cellular pathways important for cell fate decisions, including cell cycle arrest, senescence, and apoptosis. It functions as a tetramer by binding to specific DNA sequences known as response elements (REs) to control trans...
Saved in:
Published in: | PloS one 2023-08, Vol.18 (8), p.e0286193-e0286193 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The transcriptional activator p53 is a tumor suppressor protein that controls cellular pathways important for cell fate decisions, including cell cycle arrest, senescence, and apoptosis. It functions as a tetramer by binding to specific DNA sequences known as response elements (REs) to control transcription via interactions with co-regulatory complexes. Despite its biological importance, the mechanism by which p53 binds REs remains unclear. To address this, we have used an in vitro single molecule fluorescence approach to quantify the dynamic binding of full-length human p53 to five native REs in real time under equilibrium conditions. Our approach enabled us to quantify the oligomeric state of DNA-bound p53. We found little evidence that dimer/DNA complexes form as intermediates en route to binding or dissociation of p53 tetramer/DNA complexes. Interestingly, however, at some REs dimers can rapidly exchange from tetramer/DNA complexes. Real time kinetic measurements enabled us to determine rate constants for association and dissociation at all five REs, which revealed two kinetically distinct populations of tetrameric p53/RE complexes. For the less stable population, the rate constants for dissociation were larger at REs closest to consensus, showing that the more favorable binding sequences form the least kinetically stable complexes. Together our single molecule measurements provide new insight into mechanisms by which tetrameric p53 forms complexes on different native REs. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0286193 |