Loading…

Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood

Study of the genome of the SARS-CoV-2 virus, particularly with regard to understanding evolution of the virus, is crucial for managing the COVID-19 pandemic. To this end, we sample viral genomes from the GISAID repository and use several of the maximum likelihood approaches implemented in PAML, a co...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-09, Vol.18 (9), p.e0291271
Main Authors: Middleton, Carly, Kubatko, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943
cites cdi_FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943
container_end_page
container_issue 9
container_start_page e0291271
container_title PloS one
container_volume 18
creator Middleton, Carly
Kubatko, Laura
description Study of the genome of the SARS-CoV-2 virus, particularly with regard to understanding evolution of the virus, is crucial for managing the COVID-19 pandemic. To this end, we sample viral genomes from the GISAID repository and use several of the maximum likelihood approaches implemented in PAML, a collection of open source programs for phylogenetic analyses of DNA and protein sequences, to assess evidence for positive selection in the protein-coding regions of the SARS-CoV-2 genome. Across all major variants identified by June 2021, we find limited evidence for positive selection. In particular, we identify positive selection in a small proportion of sites (5-15%) in the protein-coding region of the spike protein across variants. Most other variants did not show a strong signal for positive selection overall, though there were indications of positive selection in the Delta and Kappa variants for the nucleocapsid protein. We additionally use a forward selection procedure to fit a model that allows branch-specific estimates of selection along a phylogeny relating the variants, and find that there is variation in the selective pressure across variants for the spike protein. Our results highlight the utility of computational approaches for identifying genomic regions under selection.
doi_str_mv 10.1371/journal.pone.0291271
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2864885880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A765314742</galeid><doaj_id>oai_doaj_org_article_4cf08ac43c1e41769b47209037aaf689</doaj_id><sourcerecordid>A765314742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943</originalsourceid><addsrcrecordid>eNqNkl1r2zAUhs3YYF23fzCYYTC6C2f6siRfjRD2ESgUmtJbochHiTLZyiw7dP9-SuKNevRi6ELi6Dnv-eDNsrcYzTAV-NMuDF2r_WwfWpghUmEi8LPsAleUFJwg-vzR-2X2KsYdQiWVnF9kt_MYIcYG2j4PNt-H6Hp3gDyCB9O70ObadCHGfDW_XRWLcF-Q_KA7p9s-5gen80Y_uGZocu9-gHfbEOrX2QurfYQ3432Z3X39crf4XlzffFsu5teF4Qj1hebrNaLMCAbUApSYM4xMbSSkIyXC2tIErLXFdYkMrqkkgGgFHCpbMXqZvTvL7n2IalxBVERyJmWZBBKxPBN10Du171yju18qaKdOgdBtlO56ZzwoZiyS2jBqMDAseLVmgqAKUaG15bJKWp_HasO6gdqkfXXaT0SnP63bqk04KIxKhEtx7PdqVOjCzwFirxoXDXivWwjDqfFSSEIETej7f9CnxxupjU4TuNaGVNgcRdVc8JJiJhhJ1OwJKp0aGmeSYaxL8UnCx0lCYnp46Dd6iFEtV7f_z97cT9kPj9gtaN9vY_DD0WRxCrIzeDJeB_bvljFSR7__2YY6-l2Nfqe_AdeW8ek</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864885880</pqid></control><display><type>article</type><title>Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood</title><source>PubMed Central(OA)</source><source>ProQuest - Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Middleton, Carly ; Kubatko, Laura</creator><contributor>Motayo, Babatunde Olanrewaju</contributor><creatorcontrib>Middleton, Carly ; Kubatko, Laura ; Motayo, Babatunde Olanrewaju</creatorcontrib><description>Study of the genome of the SARS-CoV-2 virus, particularly with regard to understanding evolution of the virus, is crucial for managing the COVID-19 pandemic. To this end, we sample viral genomes from the GISAID repository and use several of the maximum likelihood approaches implemented in PAML, a collection of open source programs for phylogenetic analyses of DNA and protein sequences, to assess evidence for positive selection in the protein-coding regions of the SARS-CoV-2 genome. Across all major variants identified by June 2021, we find limited evidence for positive selection. In particular, we identify positive selection in a small proportion of sites (5-15%) in the protein-coding region of the spike protein across variants. Most other variants did not show a strong signal for positive selection overall, though there were indications of positive selection in the Delta and Kappa variants for the nucleocapsid protein. We additionally use a forward selection procedure to fit a model that allows branch-specific estimates of selection along a phylogeny relating the variants, and find that there is variation in the selective pressure across variants for the spike protein. Our results highlight the utility of computational approaches for identifying genomic regions under selection.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0291271</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and life sciences ; Computer and Information Sciences ; COVID-19 ; Data collection ; Datasets ; Deoxyribonucleic acid ; DNA ; Estimates ; Gene sequencing ; Genomes ; Genomics ; Health aspects ; Maximum likelihood estimates (Statistics) ; Medicine and health sciences ; Mutation ; Natural selection ; Nucleocapsids ; Nucleotide sequence ; Pandemics ; Phylogenetics ; Phylogeny ; Positive selection ; Proteins ; Severe acute respiratory syndrome coronavirus 2 ; Source programs ; Spike protein ; Viral diseases ; Virus research ; Viruses</subject><ispartof>PloS one, 2023-09, Vol.18 (9), p.e0291271</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Middleton, Kubatko. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2023 Middleton, Kubatko. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Middleton, Kubatko 2023 Middleton, Kubatko</rights><rights>2023 Middleton, Kubatko. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943</citedby><cites>FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943</cites><orcidid>0000-0002-5215-7144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2864885880/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2864885880?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids></links><search><contributor>Motayo, Babatunde Olanrewaju</contributor><creatorcontrib>Middleton, Carly</creatorcontrib><creatorcontrib>Kubatko, Laura</creatorcontrib><title>Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood</title><title>PloS one</title><description>Study of the genome of the SARS-CoV-2 virus, particularly with regard to understanding evolution of the virus, is crucial for managing the COVID-19 pandemic. To this end, we sample viral genomes from the GISAID repository and use several of the maximum likelihood approaches implemented in PAML, a collection of open source programs for phylogenetic analyses of DNA and protein sequences, to assess evidence for positive selection in the protein-coding regions of the SARS-CoV-2 genome. Across all major variants identified by June 2021, we find limited evidence for positive selection. In particular, we identify positive selection in a small proportion of sites (5-15%) in the protein-coding region of the spike protein across variants. Most other variants did not show a strong signal for positive selection overall, though there were indications of positive selection in the Delta and Kappa variants for the nucleocapsid protein. We additionally use a forward selection procedure to fit a model that allows branch-specific estimates of selection along a phylogeny relating the variants, and find that there is variation in the selective pressure across variants for the spike protein. Our results highlight the utility of computational approaches for identifying genomic regions under selection.</description><subject>Analysis</subject><subject>Biology and life sciences</subject><subject>Computer and Information Sciences</subject><subject>COVID-19</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Estimates</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Maximum likelihood estimates (Statistics)</subject><subject>Medicine and health sciences</subject><subject>Mutation</subject><subject>Natural selection</subject><subject>Nucleocapsids</subject><subject>Nucleotide sequence</subject><subject>Pandemics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Positive selection</subject><subject>Proteins</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Source programs</subject><subject>Spike protein</subject><subject>Viral diseases</subject><subject>Virus research</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAUhs3YYF23fzCYYTC6C2f6siRfjRD2ESgUmtJbochHiTLZyiw7dP9-SuKNevRi6ELi6Dnv-eDNsrcYzTAV-NMuDF2r_WwfWpghUmEi8LPsAleUFJwg-vzR-2X2KsYdQiWVnF9kt_MYIcYG2j4PNt-H6Hp3gDyCB9O70ObadCHGfDW_XRWLcF-Q_KA7p9s-5gen80Y_uGZocu9-gHfbEOrX2QurfYQ3432Z3X39crf4XlzffFsu5teF4Qj1hebrNaLMCAbUApSYM4xMbSSkIyXC2tIErLXFdYkMrqkkgGgFHCpbMXqZvTvL7n2IalxBVERyJmWZBBKxPBN10Du171yju18qaKdOgdBtlO56ZzwoZiyS2jBqMDAseLVmgqAKUaG15bJKWp_HasO6gdqkfXXaT0SnP63bqk04KIxKhEtx7PdqVOjCzwFirxoXDXivWwjDqfFSSEIETej7f9CnxxupjU4TuNaGVNgcRdVc8JJiJhhJ1OwJKp0aGmeSYaxL8UnCx0lCYnp46Dd6iFEtV7f_z97cT9kPj9gtaN9vY_DD0WRxCrIzeDJeB_bvljFSR7__2YY6-l2Nfqe_AdeW8ek</recordid><startdate>20230914</startdate><enddate>20230914</enddate><creator>Middleton, Carly</creator><creator>Kubatko, Laura</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5215-7144</orcidid></search><sort><creationdate>20230914</creationdate><title>Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood</title><author>Middleton, Carly ; Kubatko, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Biology and life sciences</topic><topic>Computer and Information Sciences</topic><topic>COVID-19</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Estimates</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Maximum likelihood estimates (Statistics)</topic><topic>Medicine and health sciences</topic><topic>Mutation</topic><topic>Natural selection</topic><topic>Nucleocapsids</topic><topic>Nucleotide sequence</topic><topic>Pandemics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Positive selection</topic><topic>Proteins</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Source programs</topic><topic>Spike protein</topic><topic>Viral diseases</topic><topic>Virus research</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, Carly</creatorcontrib><creatorcontrib>Kubatko, Laura</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Middleton, Carly</au><au>Kubatko, Laura</au><au>Motayo, Babatunde Olanrewaju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood</atitle><jtitle>PloS one</jtitle><date>2023-09-14</date><risdate>2023</risdate><volume>18</volume><issue>9</issue><spage>e0291271</spage><pages>e0291271-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Study of the genome of the SARS-CoV-2 virus, particularly with regard to understanding evolution of the virus, is crucial for managing the COVID-19 pandemic. To this end, we sample viral genomes from the GISAID repository and use several of the maximum likelihood approaches implemented in PAML, a collection of open source programs for phylogenetic analyses of DNA and protein sequences, to assess evidence for positive selection in the protein-coding regions of the SARS-CoV-2 genome. Across all major variants identified by June 2021, we find limited evidence for positive selection. In particular, we identify positive selection in a small proportion of sites (5-15%) in the protein-coding region of the spike protein across variants. Most other variants did not show a strong signal for positive selection overall, though there were indications of positive selection in the Delta and Kappa variants for the nucleocapsid protein. We additionally use a forward selection procedure to fit a model that allows branch-specific estimates of selection along a phylogeny relating the variants, and find that there is variation in the selective pressure across variants for the spike protein. Our results highlight the utility of computational approaches for identifying genomic regions under selection.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0291271</doi><tpages>e0291271</tpages><orcidid>https://orcid.org/0000-0002-5215-7144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2023-09, Vol.18 (9), p.e0291271
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2864885880
source PubMed Central(OA); ProQuest - Publicly Available Content Database; Coronavirus Research Database
subjects Analysis
Biology and life sciences
Computer and Information Sciences
COVID-19
Data collection
Datasets
Deoxyribonucleic acid
DNA
Estimates
Gene sequencing
Genomes
Genomics
Health aspects
Maximum likelihood estimates (Statistics)
Medicine and health sciences
Mutation
Natural selection
Nucleocapsids
Nucleotide sequence
Pandemics
Phylogenetics
Phylogeny
Positive selection
Proteins
Severe acute respiratory syndrome coronavirus 2
Source programs
Spike protein
Viral diseases
Virus research
Viruses
title Assessment of positive selection across SARS-CoV-2 variants via maximum likelihood
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20positive%20selection%20across%20SARS-CoV-2%20variants%20via%20maximum%20likelihood&rft.jtitle=PloS%20one&rft.au=Middleton,%20Carly&rft.date=2023-09-14&rft.volume=18&rft.issue=9&rft.spage=e0291271&rft.pages=e0291271-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0291271&rft_dat=%3Cgale_plos_%3EA765314742%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c600t-a6bb034c74e3fee516410cdc8e8e88801af3b03baf1d50c1d382e039e6e9f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864885880&rft_id=info:pmid/&rft_galeid=A765314742&rfr_iscdi=true