Loading…
Systematic analysis of tup1 and cyc8 mutants reveals distinct roles for TUP1 and CYC8 and offers new insight into the regulation of gene transcription by the yeast Tup1-Cyc8 complex
The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double delet...
Saved in:
Published in: | PLoS genetics 2023-08, Vol.19 (8), p.e1010876-e1010876 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double deletion mutants and show that CYC8 represses more genes than TUP1, and that there are genes subject to (i) unique repression by TUP1 or CYC8, (ii) redundant repression by TUP1 and CYC8, and (iii) there are genes at which de-repression in a cyc8 mutant is dependent upon TUP1, and vice-versa. We also reveal that Tup1p and Cyc8p can make distinct contributions to commonly repressed genes most likely via specific interactions with different histone deacetylases. Furthermore, we show that Tup1p and Cyc8p can be found independently of each other to negatively regulate gene transcription and can persist at active genes to negatively regulate on-going transcription. Together, these data suggest that Tup1p and Cyc8p can associate with active and inactive genes to mediate distinct negative and positive regulatory roles when functioning within, and possibly out with the complex. |
---|---|
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1010876 |