Loading…

Resonance of the tympanoperiotic complex of fin whales with implications for their low frequency hearing

The tympanoperiotic complex (TPC) bones of the fin whale skull were studied using experimental measurements and simulation modeling to provide insight into the low frequency hearing of these animals. The study focused on measuring the sounds emitted by the left and right TPC bones when the bones wer...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-10, Vol.18 (10), p.e0288119-e0288119
Main Authors: Morris, Margaret, Krysl, Petr, Hildebrand, John, Cranford, Ted
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The tympanoperiotic complex (TPC) bones of the fin whale skull were studied using experimental measurements and simulation modeling to provide insight into the low frequency hearing of these animals. The study focused on measuring the sounds emitted by the left and right TPC bones when the bones were tapped at designated locations. Radiated sound was recorded by eight microphones arranged around the tympanic bulla. A finite element model was also created to simulate the natural mode vibrations of the TPC and ossicular chain, using a 3D mesh generated from a CT scan. The simulations produced mode shapes and frequencies for various Young's modulus and density values. The recorded sound amplitudes were compared with the normal component of the simulated displacement and it was found that the modes identified in the experiment most closely resembled those found with Young's modulus for stiff and flexible bone set to 25 and 5 GPa, respectively. The first twelve modes of vibration of the TPC had resonance frequencies between 100Hz and 6kHz. Many vibrational modes focused energy at the sigmoidal process, and therefore the ossicular chain. The resonance frequencies of the left and right TPC were offset, suggesting a mechanism for the animals to have improved hearing at a range of frequencies as well as a mechanism for directionality in their perception of sounds.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0288119