Loading…
SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability
Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently describe...
Saved in:
Published in: | PLoS biology 2024-03, Vol.22 (3), p.e3002552-e3002552 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873 |
---|---|
cites | cdi_FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873 |
container_end_page | e3002552 |
container_issue | 3 |
container_start_page | e3002552 |
container_title | PLoS biology |
container_volume | 22 |
creator | Yates, Maïlyn Marois, Isabelle St-Hilaire, Edlie Ronato, Daryl A Djerir, Billel Brochu, Chloé Morin, Théo Hammond-Martel, Ian Gezzar-Dandashi, Sari Casimir, Lisa Drobetsky, Elliot Cappadocia, Laurent Masson, Jean-Yves Wurtele, Hugo Maréchal, Alexandre |
description | Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing. |
doi_str_mv | 10.1371/journal.pbio.3002552 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A789121716</galeid><doaj_id>oai_doaj_org_article_7a96143210c043db9c56e93cd5ee4106</doaj_id><sourcerecordid>A789121716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEou3CP0AQiQscdvFnHJ_QqnytVFq0Ba6W40y2XrLx1nYK_fc4bFp1UQ8gH2x5nnlnPOPJsmcYzTAV-M3a9b7T7WxbWTejCBHOyYPsEHPGp6Is-cM754PsKIR1Yogk5ePsgJYckUKIw6w7_zxfHs9PcN5X9rK38brV0bouN66L3rUhtzHkOgRn7M7w08aLfPllPjVOR6jzEN6dznPd1fnWu42LEHIP29aaHd44_yMPUVe2TeJPskeNbgM8HfdJ9u3D-6_Hn6YnZx8XKY2pKWQRp0YA44g1jGnTNKUBzhlqaoEKqhHjQlKGas0YCCyLEmRDKDJFJStWISCloJPsxU5327qgxlIFRVEhsSgpGYjFjqidXquttxvtr5XTVv25cH6ltI_WtKCElgVmlGBkEKN1JQ0vQFJTcwCGU06T7O0Yra82UBtIpdPtnui-pbMXauWuFEYyNYKUSeHVqODdZQ8hqo0NBtpWd-D6oIgURCCCmEzoy7_Q-583UiudXmC7xqXAZhBVc1FKTLDAQ-Kze6i0atjY9AOgsel-z-H1nsPwS-BXXOk-BLU4X_4He_rv7Nn3fZbtWONdCB6a20JjpIbRuCmIGkZDjaOR3J7fbdKt080s0N-WeQht</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178327</pqid></control><display><type>article</type><title>SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yates, Maïlyn ; Marois, Isabelle ; St-Hilaire, Edlie ; Ronato, Daryl A ; Djerir, Billel ; Brochu, Chloé ; Morin, Théo ; Hammond-Martel, Ian ; Gezzar-Dandashi, Sari ; Casimir, Lisa ; Drobetsky, Elliot ; Cappadocia, Laurent ; Masson, Jean-Yves ; Wurtele, Hugo ; Maréchal, Alexandre</creator><contributor>Paull, Tanya</contributor><creatorcontrib>Yates, Maïlyn ; Marois, Isabelle ; St-Hilaire, Edlie ; Ronato, Daryl A ; Djerir, Billel ; Brochu, Chloé ; Morin, Théo ; Hammond-Martel, Ian ; Gezzar-Dandashi, Sari ; Casimir, Lisa ; Drobetsky, Elliot ; Cappadocia, Laurent ; Masson, Jean-Yves ; Wurtele, Hugo ; Maréchal, Alexandre ; Paull, Tanya</creatorcontrib><description>Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.3002552</identifier><identifier>PMID: 38502677</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anemia ; Biology and life sciences ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA repair ; DNA replication ; Enzymes ; Fanconi syndrome ; Genomes ; Genomic instability ; Homologous recombination ; Identification and classification ; Irradiation ; Kinases ; Ligases ; Mass spectrometry ; Medicine and Health Sciences ; Mutagenesis ; Mutation ; Properties ; Proteasomes ; Proteins ; Proteomics ; Recruitment ; Replication ; Replication forks ; Research and Analysis Methods ; Scientific imaging ; Single-stranded DNA ; Stability ; Substrates ; Translocase ; Ubiquitin-proteasome system ; Ubiquitin-protein ligase ; Ultraviolet radiation</subject><ispartof>PLoS biology, 2024-03, Vol.22 (3), p.e3002552-e3002552</ispartof><rights>Copyright: © 2024 Yates et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Yates et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Yates et al 2024 Yates et al</rights><rights>2024 Yates et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873</citedby><cites>FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873</cites><orcidid>0000-0003-3216-6542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178327/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178327?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38502677$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Paull, Tanya</contributor><creatorcontrib>Yates, Maïlyn</creatorcontrib><creatorcontrib>Marois, Isabelle</creatorcontrib><creatorcontrib>St-Hilaire, Edlie</creatorcontrib><creatorcontrib>Ronato, Daryl A</creatorcontrib><creatorcontrib>Djerir, Billel</creatorcontrib><creatorcontrib>Brochu, Chloé</creatorcontrib><creatorcontrib>Morin, Théo</creatorcontrib><creatorcontrib>Hammond-Martel, Ian</creatorcontrib><creatorcontrib>Gezzar-Dandashi, Sari</creatorcontrib><creatorcontrib>Casimir, Lisa</creatorcontrib><creatorcontrib>Drobetsky, Elliot</creatorcontrib><creatorcontrib>Cappadocia, Laurent</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wurtele, Hugo</creatorcontrib><creatorcontrib>Maréchal, Alexandre</creatorcontrib><title>SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.</description><subject>Analysis</subject><subject>Anemia</subject><subject>Biology and life sciences</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>DNA replication</subject><subject>Enzymes</subject><subject>Fanconi syndrome</subject><subject>Genomes</subject><subject>Genomic instability</subject><subject>Homologous recombination</subject><subject>Identification and classification</subject><subject>Irradiation</subject><subject>Kinases</subject><subject>Ligases</subject><subject>Mass spectrometry</subject><subject>Medicine and Health Sciences</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Properties</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Recruitment</subject><subject>Replication</subject><subject>Replication forks</subject><subject>Research and Analysis Methods</subject><subject>Scientific imaging</subject><subject>Single-stranded DNA</subject><subject>Stability</subject><subject>Substrates</subject><subject>Translocase</subject><subject>Ubiquitin-proteasome system</subject><subject>Ubiquitin-protein ligase</subject><subject>Ultraviolet radiation</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEou3CP0AQiQscdvFnHJ_QqnytVFq0Ba6W40y2XrLx1nYK_fc4bFp1UQ8gH2x5nnlnPOPJsmcYzTAV-M3a9b7T7WxbWTejCBHOyYPsEHPGp6Is-cM754PsKIR1Yogk5ePsgJYckUKIw6w7_zxfHs9PcN5X9rK38brV0bouN66L3rUhtzHkOgRn7M7w08aLfPllPjVOR6jzEN6dznPd1fnWu42LEHIP29aaHd44_yMPUVe2TeJPskeNbgM8HfdJ9u3D-6_Hn6YnZx8XKY2pKWQRp0YA44g1jGnTNKUBzhlqaoEKqhHjQlKGas0YCCyLEmRDKDJFJStWISCloJPsxU5327qgxlIFRVEhsSgpGYjFjqidXquttxvtr5XTVv25cH6ltI_WtKCElgVmlGBkEKN1JQ0vQFJTcwCGU06T7O0Yra82UBtIpdPtnui-pbMXauWuFEYyNYKUSeHVqODdZQ8hqo0NBtpWd-D6oIgURCCCmEzoy7_Q-583UiudXmC7xqXAZhBVc1FKTLDAQ-Kze6i0atjY9AOgsel-z-H1nsPwS-BXXOk-BLU4X_4He_rv7Nn3fZbtWONdCB6a20JjpIbRuCmIGkZDjaOR3J7fbdKt080s0N-WeQht</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Yates, Maïlyn</creator><creator>Marois, Isabelle</creator><creator>St-Hilaire, Edlie</creator><creator>Ronato, Daryl A</creator><creator>Djerir, Billel</creator><creator>Brochu, Chloé</creator><creator>Morin, Théo</creator><creator>Hammond-Martel, Ian</creator><creator>Gezzar-Dandashi, Sari</creator><creator>Casimir, Lisa</creator><creator>Drobetsky, Elliot</creator><creator>Cappadocia, Laurent</creator><creator>Masson, Jean-Yves</creator><creator>Wurtele, Hugo</creator><creator>Maréchal, Alexandre</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-3216-6542</orcidid></search><sort><creationdate>20240319</creationdate><title>SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability</title><author>Yates, Maïlyn ; Marois, Isabelle ; St-Hilaire, Edlie ; Ronato, Daryl A ; Djerir, Billel ; Brochu, Chloé ; Morin, Théo ; Hammond-Martel, Ian ; Gezzar-Dandashi, Sari ; Casimir, Lisa ; Drobetsky, Elliot ; Cappadocia, Laurent ; Masson, Jean-Yves ; Wurtele, Hugo ; Maréchal, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Anemia</topic><topic>Biology and life sciences</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>DNA replication</topic><topic>Enzymes</topic><topic>Fanconi syndrome</topic><topic>Genomes</topic><topic>Genomic instability</topic><topic>Homologous recombination</topic><topic>Identification and classification</topic><topic>Irradiation</topic><topic>Kinases</topic><topic>Ligases</topic><topic>Mass spectrometry</topic><topic>Medicine and Health Sciences</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Properties</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Recruitment</topic><topic>Replication</topic><topic>Replication forks</topic><topic>Research and Analysis Methods</topic><topic>Scientific imaging</topic><topic>Single-stranded DNA</topic><topic>Stability</topic><topic>Substrates</topic><topic>Translocase</topic><topic>Ubiquitin-proteasome system</topic><topic>Ubiquitin-protein ligase</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yates, Maïlyn</creatorcontrib><creatorcontrib>Marois, Isabelle</creatorcontrib><creatorcontrib>St-Hilaire, Edlie</creatorcontrib><creatorcontrib>Ronato, Daryl A</creatorcontrib><creatorcontrib>Djerir, Billel</creatorcontrib><creatorcontrib>Brochu, Chloé</creatorcontrib><creatorcontrib>Morin, Théo</creatorcontrib><creatorcontrib>Hammond-Martel, Ian</creatorcontrib><creatorcontrib>Gezzar-Dandashi, Sari</creatorcontrib><creatorcontrib>Casimir, Lisa</creatorcontrib><creatorcontrib>Drobetsky, Elliot</creatorcontrib><creatorcontrib>Cappadocia, Laurent</creatorcontrib><creatorcontrib>Masson, Jean-Yves</creatorcontrib><creatorcontrib>Wurtele, Hugo</creatorcontrib><creatorcontrib>Maréchal, Alexandre</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yates, Maïlyn</au><au>Marois, Isabelle</au><au>St-Hilaire, Edlie</au><au>Ronato, Daryl A</au><au>Djerir, Billel</au><au>Brochu, Chloé</au><au>Morin, Théo</au><au>Hammond-Martel, Ian</au><au>Gezzar-Dandashi, Sari</au><au>Casimir, Lisa</au><au>Drobetsky, Elliot</au><au>Cappadocia, Laurent</au><au>Masson, Jean-Yves</au><au>Wurtele, Hugo</au><au>Maréchal, Alexandre</au><au>Paull, Tanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2024-03-19</date><risdate>2024</risdate><volume>22</volume><issue>3</issue><spage>e3002552</spage><epage>e3002552</epage><pages>e3002552-e3002552</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Impediments in replication fork progression cause genomic instability, mutagenesis, and severe pathologies. At stalled forks, RPA-coated single-stranded DNA (ssDNA) activates the ATR kinase and directs fork remodeling, 2 key early events of the replication stress response. RFWD3, a recently described Fanconi anemia (FA) ubiquitin ligase, associates with RPA and promotes its ubiquitylation, facilitating late steps of homologous recombination (HR). Intriguingly, RFWD3 also regulates fork progression, restart and stability via poorly understood mechanisms. Here, we used proteomics to identify putative RFWD3 substrates during replication stress in human cells. We show that RFWD3 interacts with and ubiquitylates the SMARCAL1 DNA translocase directly in vitro and following DNA damage in vivo. SMARCAL1 ubiquitylation does not trigger its subsequent proteasomal degradation but instead disengages it from RPA thereby regulating its function at replication forks. Proper regulation of SMARCAL1 by RFWD3 at stalled forks protects them from excessive MUS81-mediated cleavage in response to UV irradiation, thereby limiting DNA replication stress. Collectively, our results identify RFWD3-mediated SMARCAL1 ubiquitylation as a novel mechanism that modulates fork remodeling to avoid genome instability triggered by aberrant fork processing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38502677</pmid><doi>10.1371/journal.pbio.3002552</doi><orcidid>https://orcid.org/0000-0003-3216-6542</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2024-03, Vol.22 (3), p.e3002552-e3002552 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_3069178327 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Analysis Anemia Biology and life sciences Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA repair DNA replication Enzymes Fanconi syndrome Genomes Genomic instability Homologous recombination Identification and classification Irradiation Kinases Ligases Mass spectrometry Medicine and Health Sciences Mutagenesis Mutation Properties Proteasomes Proteins Proteomics Recruitment Replication Replication forks Research and Analysis Methods Scientific imaging Single-stranded DNA Stability Substrates Translocase Ubiquitin-proteasome system Ubiquitin-protein ligase Ultraviolet radiation |
title | SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A31%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMARCAL1%20ubiquitylation%20controls%20its%20association%20with%20RPA-coated%20ssDNA%20and%20promotes%20replication%20fork%20stability&rft.jtitle=PLoS%20biology&rft.au=Yates,%20Ma%C3%AFlyn&rft.date=2024-03-19&rft.volume=22&rft.issue=3&rft.spage=e3002552&rft.epage=e3002552&rft.pages=e3002552-e3002552&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.3002552&rft_dat=%3Cgale_plos_%3EA789121716%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c696t-c7e4504f44acff8ce5540fd7063a04579340da44e71968e9f230c6b9b4b0e2873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178327&rft_id=info:pmid/38502677&rft_galeid=A789121716&rfr_iscdi=true |