Loading…

The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2024-04, Vol.20 (4), p.e1011224-e1011224
Main Authors: Camp, Darius, Venkatesh, Bhavya, Solianova, Veronika, Varela, Lorena, Goult, Benjamin T, Tanentzapf, Guy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793
cites cdi_FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793
container_end_page e1011224
container_issue 4
container_start_page e1011224
container_title PLoS genetics
container_volume 20
creator Camp, Darius
Venkatesh, Bhavya
Solianova, Veronika
Varela, Lorena
Goult, Benjamin T
Tanentzapf, Guy
description Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.
doi_str_mv 10.1371/journal.pgen.1011224
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793111127</galeid><doaj_id>oai_doaj_org_article_a8685c47f2c841589959d4a4020b32be</doaj_id><sourcerecordid>A793111127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793</originalsourceid><addsrcrecordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0OK_sf2EpmpApaFJMHg1juMkrly7xM4E3x6XZlOD9kDykOjmd459T3yL4jkES4gZfLcJ4-CVW-4645cQQIgQeVCcQkrxghFAHh69nxRPYtwAgCkX7HFxgnlVIcaq0-LHdW9KpZP1ZW19Y31XRptMLENbJuVyuVc3pqxD6svGxszpVCrflDpsd85sjU9q-F0OwWVNprVxbnGx-lyqpjfRBv-0eNQqF82z6XlWfPtwcb36tLi8-rhenV8udCVwWiDMEK-xaYQwEIOqagxVArWGY65zH4oKRnQLmNaYaiQ4hJoxgGpqVK2ZwGfFy4PvzoUop3CizFYCMs4rkon1gWiC2sjdYLd55zIoK_8WwtBJNSSrnZGKV5xqwlqkOYE5NEFFQxQBCNQY1SZ7vZ9WG-utaXSOYVBuZjr_4m0vu3AjIQSMck6zw5vJYQg_RxOT3Nq4T095E8b9xgkThCKIMvrqH_T-9iaqU7kD69uQF9Z7U3me84H5QixTy3uofDdma3XwprW5PhO8nQkyk8yv1KkxRrn--uX_2avvc_b1Edsb5VIfgxtTPjNxDpIDqIcQ42Dau5QhkPtJuE1D7idBTpOQZS-O_9Cd6Pbo4z8iDwGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178864</pqid></control><display><type>article</type><title>The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Camp, Darius ; Venkatesh, Bhavya ; Solianova, Veronika ; Varela, Lorena ; Goult, Benjamin T ; Tanentzapf, Guy</creator><contributor>Wappner, Pablo</contributor><creatorcontrib>Camp, Darius ; Venkatesh, Bhavya ; Solianova, Veronika ; Varela, Lorena ; Goult, Benjamin T ; Tanentzapf, Guy ; Wappner, Pablo</creatorcontrib><description>Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011224</identifier><identifier>PMID: 38662776</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actin Cytoskeleton - genetics ; Actin Cytoskeleton - metabolism ; Actins - genetics ; Actins - metabolism ; Amino acids ; Animals ; Binding Sites ; Binding sites (Biochemistry) ; Biology and Life Sciences ; Cell adhesion ; Cell adhesion &amp; migration ; Cell Adhesion - genetics ; Cell research ; Cell surface receptors ; CRISPR ; Cytoskeletal proteins ; Cytoskeleton ; Cytoskeleton - genetics ; Cytoskeleton - metabolism ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryogenesis ; Extracellular matrix ; Extracellular Matrix - metabolism ; Insects ; Integrins ; Integrins - genetics ; Integrins - metabolism ; Lethality ; Mutants ; Mutation ; Phenotypes ; Protein Binding ; Proteins ; Structure ; Talin ; Talin - genetics ; Talin - metabolism</subject><ispartof>PLoS genetics, 2024-04, Vol.20 (4), p.e1011224-e1011224</ispartof><rights>Copyright: © 2024 Camp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Camp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Camp et al 2024 Camp et al</rights><rights>2024 Camp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793</citedby><cites>FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793</cites><orcidid>0000-0002-2443-233X ; 0000-0003-1948-6330 ; 0009-0006-9062-7158 ; 0000-0002-3438-2807 ; 0000-0002-0743-9441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38662776$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wappner, Pablo</contributor><creatorcontrib>Camp, Darius</creatorcontrib><creatorcontrib>Venkatesh, Bhavya</creatorcontrib><creatorcontrib>Solianova, Veronika</creatorcontrib><creatorcontrib>Varela, Lorena</creatorcontrib><creatorcontrib>Goult, Benjamin T</creatorcontrib><creatorcontrib>Tanentzapf, Guy</creatorcontrib><title>The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.</description><subject>Actin</subject><subject>Actin Cytoskeleton - genetics</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Biology and Life Sciences</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell Adhesion - genetics</subject><subject>Cell research</subject><subject>Cell surface receptors</subject><subject>CRISPR</subject><subject>Cytoskeletal proteins</subject><subject>Cytoskeleton</subject><subject>Cytoskeleton - genetics</subject><subject>Cytoskeleton - metabolism</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryogenesis</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Insects</subject><subject>Integrins</subject><subject>Integrins - genetics</subject><subject>Integrins - metabolism</subject><subject>Lethality</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Structure</subject><subject>Talin</subject><subject>Talin - genetics</subject><subject>Talin - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk19v0zAUxSMEYmPwDRBEQkLw0OK_sf2EpmpApaFJMHg1juMkrly7xM4E3x6XZlOD9kDykOjmd459T3yL4jkES4gZfLcJ4-CVW-4645cQQIgQeVCcQkrxghFAHh69nxRPYtwAgCkX7HFxgnlVIcaq0-LHdW9KpZP1ZW19Y31XRptMLENbJuVyuVc3pqxD6svGxszpVCrflDpsd85sjU9q-F0OwWVNprVxbnGx-lyqpjfRBv-0eNQqF82z6XlWfPtwcb36tLi8-rhenV8udCVwWiDMEK-xaYQwEIOqagxVArWGY65zH4oKRnQLmNaYaiQ4hJoxgGpqVK2ZwGfFy4PvzoUop3CizFYCMs4rkon1gWiC2sjdYLd55zIoK_8WwtBJNSSrnZGKV5xqwlqkOYE5NEFFQxQBCNQY1SZ7vZ9WG-utaXSOYVBuZjr_4m0vu3AjIQSMck6zw5vJYQg_RxOT3Nq4T095E8b9xgkThCKIMvrqH_T-9iaqU7kD69uQF9Z7U3me84H5QixTy3uofDdma3XwprW5PhO8nQkyk8yv1KkxRrn--uX_2avvc_b1Edsb5VIfgxtTPjNxDpIDqIcQ42Dau5QhkPtJuE1D7idBTpOQZS-O_9Cd6Pbo4z8iDwGA</recordid><startdate>20240425</startdate><enddate>20240425</enddate><creator>Camp, Darius</creator><creator>Venkatesh, Bhavya</creator><creator>Solianova, Veronika</creator><creator>Varela, Lorena</creator><creator>Goult, Benjamin T</creator><creator>Tanentzapf, Guy</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2443-233X</orcidid><orcidid>https://orcid.org/0000-0003-1948-6330</orcidid><orcidid>https://orcid.org/0009-0006-9062-7158</orcidid><orcidid>https://orcid.org/0000-0002-3438-2807</orcidid><orcidid>https://orcid.org/0000-0002-0743-9441</orcidid></search><sort><creationdate>20240425</creationdate><title>The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion</title><author>Camp, Darius ; Venkatesh, Bhavya ; Solianova, Veronika ; Varela, Lorena ; Goult, Benjamin T ; Tanentzapf, Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actin</topic><topic>Actin Cytoskeleton - genetics</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Biology and Life Sciences</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell Adhesion - genetics</topic><topic>Cell research</topic><topic>Cell surface receptors</topic><topic>CRISPR</topic><topic>Cytoskeletal proteins</topic><topic>Cytoskeleton</topic><topic>Cytoskeleton - genetics</topic><topic>Cytoskeleton - metabolism</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryogenesis</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Insects</topic><topic>Integrins</topic><topic>Integrins - genetics</topic><topic>Integrins - metabolism</topic><topic>Lethality</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Structure</topic><topic>Talin</topic><topic>Talin - genetics</topic><topic>Talin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camp, Darius</creatorcontrib><creatorcontrib>Venkatesh, Bhavya</creatorcontrib><creatorcontrib>Solianova, Veronika</creatorcontrib><creatorcontrib>Varela, Lorena</creatorcontrib><creatorcontrib>Goult, Benjamin T</creatorcontrib><creatorcontrib>Tanentzapf, Guy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camp, Darius</au><au>Venkatesh, Bhavya</au><au>Solianova, Veronika</au><au>Varela, Lorena</au><au>Goult, Benjamin T</au><au>Tanentzapf, Guy</au><au>Wappner, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2024-04-25</date><risdate>2024</risdate><volume>20</volume><issue>4</issue><spage>e1011224</spage><epage>e1011224</epage><pages>e1011224-e1011224</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38662776</pmid><doi>10.1371/journal.pgen.1011224</doi><tpages>e1011224</tpages><orcidid>https://orcid.org/0000-0002-2443-233X</orcidid><orcidid>https://orcid.org/0000-0003-1948-6330</orcidid><orcidid>https://orcid.org/0009-0006-9062-7158</orcidid><orcidid>https://orcid.org/0000-0002-3438-2807</orcidid><orcidid>https://orcid.org/0000-0002-0743-9441</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2024-04, Vol.20 (4), p.e1011224-e1011224
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_3069178864
source Open Access: PubMed Central; Publicly Available Content Database
subjects Actin
Actin Cytoskeleton - genetics
Actin Cytoskeleton - metabolism
Actins - genetics
Actins - metabolism
Amino acids
Animals
Binding Sites
Binding sites (Biochemistry)
Biology and Life Sciences
Cell adhesion
Cell adhesion & migration
Cell Adhesion - genetics
Cell research
Cell surface receptors
CRISPR
Cytoskeletal proteins
Cytoskeleton
Cytoskeleton - genetics
Cytoskeleton - metabolism
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Embryogenesis
Extracellular matrix
Extracellular Matrix - metabolism
Insects
Integrins
Integrins - genetics
Integrins - metabolism
Lethality
Mutants
Mutation
Phenotypes
Protein Binding
Proteins
Structure
Talin
Talin - genetics
Talin - metabolism
title The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20actin%20binding%20sites%20of%20talin%20have%20both%20distinct%20and%20complementary%20roles%20in%20cell-ECM%20adhesion&rft.jtitle=PLoS%20genetics&rft.au=Camp,%20Darius&rft.date=2024-04-25&rft.volume=20&rft.issue=4&rft.spage=e1011224&rft.epage=e1011224&rft.pages=e1011224-e1011224&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011224&rft_dat=%3Cgale_plos_%3EA793111127%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c693t-23728b3ed99e13066de5a92fe838c155a5974cf07cc35c29811c7702b5eabc793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178864&rft_id=info:pmid/38662776&rft_galeid=A793111127&rfr_iscdi=true