Loading…

Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function

The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II lo...

Full description

Saved in:
Bibliographic Details
Published in:PLoS genetics 2023-12, Vol.19 (12), p.e1011082-e1011082
Main Authors: Fletcher, Jessica, O'Connor-Moneley, James, Frawley, Dean, Flanagan, Peter R, Alaalm, Leenah, Menendez-Manjon, Pilar, Estevez, Samuel Vega, Hendricks, Shane, Woodruff, Andrew L, Buscaino, Alessia, Anderson, Matthew Z, Sullivan, Derek J, Moran, Gary P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73
container_end_page e1011082
container_issue 12
container_start_page e1011082
container_title PLoS genetics
container_volume 19
creator Fletcher, Jessica
O'Connor-Moneley, James
Frawley, Dean
Flanagan, Peter R
Alaalm, Leenah
Menendez-Manjon, Pilar
Estevez, Samuel Vega
Hendricks, Shane
Woodruff, Andrew L
Buscaino, Alessia
Anderson, Matthew Z
Sullivan, Derek J
Moran, Gary P
description The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.
doi_str_mv 10.1371/journal.pgen.1011082
format article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6874864e6b33490da8798f1d41d1bd22</doaj_id><sourcerecordid>3069178952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</originalsourceid><addsrcrecordid>eNptks1uEzEUhUcIREvhDRBYYsOCCfbYM7ZXCIW_SJGKSllbd_yTOHI8rT0D6guxB94jz8SEJFWKWPnK_s4591q3KJ4SPCGUk9erbkgRwuRqYeOEYEKwqO4Vp6SuackZZveP6pPiUc4rjGktJH9YnFCBmagkOy1-vLPB9r6LqHOoX1o0hWi8AQSh9RpiRpfzczRGWORg7cMNGrKPCzS9mH35fFFOIUu0HnrYEtnnURa67xnpJSTQvU0-w8HdDVFvawjIeOdsslHbjHxEm5_lK7T5VaIxG21-l0eZe83j4oGDkO2T_XlWfP3w_nL6qZyff5xN385LzXjTl7ICIbQQjXDWOnC10JJK3RLbcitxYwyBhmlrNGMS2gabmsu6al2NCZctp2fF853vVeiy2n9xVhQ3knAxoiMx2xGmg5W6Sn4N6UZ14NXfiy4tFKTe62BVIzgTDbNNSymT2IDgUjhiGDGkNdXW680-bWjXY1M29gnCHdO7L9Ev1aL7pgjmFSFSjg4v9w6pux5s7tXaZ21DgGi7IatKSEFJxSo6oi_-Qf8_HttROnU5J-tuuyFYbffuoFLbvVP7vRtlz44nuRUdFo3-AZV62Us</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178952</pqid></control><display><type>article</type><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P</creator><contributor>Forche, Anja</contributor><creatorcontrib>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P ; Forche, Anja</creatorcontrib><description>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011082</identifier><identifier>PMID: 38048294</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Candida albicans ; Candida albicans - metabolism ; Carbohydrate metabolism ; Cellular stress response ; Chromosomes ; Complementation ; CRISPR ; CRISPR-Cas Systems - genetics ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Galactose ; Gene Deletion ; Gene expression ; Gene Expression Regulation, Fungal ; Genes ; Genomes ; Glycolysis ; Humans ; Hyphae ; Kinases ; Localization ; Medicine and Health Sciences ; Mutagenesis ; Mutants ; Oxidative stress ; Phenotype ; Phenotypes ; Proteins ; Research and Analysis Methods ; RNA polymerase ; Transcriptomics ; Virulence ; Yeast</subject><ispartof>PLoS genetics, 2023-12, Vol.19 (12), p.e1011082-e1011082</ispartof><rights>Copyright: © 2023 Fletcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Fletcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Fletcher et al 2023 Fletcher et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</cites><orcidid>0000-0002-1704-3168 ; 0000-0003-0469-1788 ; 0000-0003-1683-2170 ; 0000-0002-5818-360X ; 0000-0002-4690-0560 ; 0000-0002-6593-0319 ; 0000-0003-2170-0420 ; 0000-0003-0195-9697 ; 0000-0002-8371-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38048294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Forche, Anja</contributor><creatorcontrib>Fletcher, Jessica</creatorcontrib><creatorcontrib>O'Connor-Moneley, James</creatorcontrib><creatorcontrib>Frawley, Dean</creatorcontrib><creatorcontrib>Flanagan, Peter R</creatorcontrib><creatorcontrib>Alaalm, Leenah</creatorcontrib><creatorcontrib>Menendez-Manjon, Pilar</creatorcontrib><creatorcontrib>Estevez, Samuel Vega</creatorcontrib><creatorcontrib>Hendricks, Shane</creatorcontrib><creatorcontrib>Woodruff, Andrew L</creatorcontrib><creatorcontrib>Buscaino, Alessia</creatorcontrib><creatorcontrib>Anderson, Matthew Z</creatorcontrib><creatorcontrib>Sullivan, Derek J</creatorcontrib><creatorcontrib>Moran, Gary P</creatorcontrib><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</description><subject>Biology and Life Sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - metabolism</subject><subject>Carbohydrate metabolism</subject><subject>Cellular stress response</subject><subject>Chromosomes</subject><subject>Complementation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Galactose</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hyphae</subject><subject>Kinases</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Oxidative stress</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Transcriptomics</subject><subject>Virulence</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1uEzEUhUcIREvhDRBYYsOCCfbYM7ZXCIW_SJGKSllbd_yTOHI8rT0D6guxB94jz8SEJFWKWPnK_s4591q3KJ4SPCGUk9erbkgRwuRqYeOEYEKwqO4Vp6SuackZZveP6pPiUc4rjGktJH9YnFCBmagkOy1-vLPB9r6LqHOoX1o0hWi8AQSh9RpiRpfzczRGWORg7cMNGrKPCzS9mH35fFFOIUu0HnrYEtnnURa67xnpJSTQvU0-w8HdDVFvawjIeOdsslHbjHxEm5_lK7T5VaIxG21-l0eZe83j4oGDkO2T_XlWfP3w_nL6qZyff5xN385LzXjTl7ICIbQQjXDWOnC10JJK3RLbcitxYwyBhmlrNGMS2gabmsu6al2NCZctp2fF853vVeiy2n9xVhQ3knAxoiMx2xGmg5W6Sn4N6UZ14NXfiy4tFKTe62BVIzgTDbNNSymT2IDgUjhiGDGkNdXW680-bWjXY1M29gnCHdO7L9Ev1aL7pgjmFSFSjg4v9w6pux5s7tXaZ21DgGi7IatKSEFJxSo6oi_-Qf8_HttROnU5J-tuuyFYbffuoFLbvVP7vRtlz44nuRUdFo3-AZV62Us</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Fletcher, Jessica</creator><creator>O'Connor-Moneley, James</creator><creator>Frawley, Dean</creator><creator>Flanagan, Peter R</creator><creator>Alaalm, Leenah</creator><creator>Menendez-Manjon, Pilar</creator><creator>Estevez, Samuel Vega</creator><creator>Hendricks, Shane</creator><creator>Woodruff, Andrew L</creator><creator>Buscaino, Alessia</creator><creator>Anderson, Matthew Z</creator><creator>Sullivan, Derek J</creator><creator>Moran, Gary P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1704-3168</orcidid><orcidid>https://orcid.org/0000-0003-0469-1788</orcidid><orcidid>https://orcid.org/0000-0003-1683-2170</orcidid><orcidid>https://orcid.org/0000-0002-5818-360X</orcidid><orcidid>https://orcid.org/0000-0002-4690-0560</orcidid><orcidid>https://orcid.org/0000-0002-6593-0319</orcidid><orcidid>https://orcid.org/0000-0003-2170-0420</orcidid><orcidid>https://orcid.org/0000-0003-0195-9697</orcidid><orcidid>https://orcid.org/0000-0002-8371-5233</orcidid></search><sort><creationdate>20231201</creationdate><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><author>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology and Life Sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - metabolism</topic><topic>Carbohydrate metabolism</topic><topic>Cellular stress response</topic><topic>Chromosomes</topic><topic>Complementation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Galactose</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hyphae</topic><topic>Kinases</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Oxidative stress</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Transcriptomics</topic><topic>Virulence</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, Jessica</creatorcontrib><creatorcontrib>O'Connor-Moneley, James</creatorcontrib><creatorcontrib>Frawley, Dean</creatorcontrib><creatorcontrib>Flanagan, Peter R</creatorcontrib><creatorcontrib>Alaalm, Leenah</creatorcontrib><creatorcontrib>Menendez-Manjon, Pilar</creatorcontrib><creatorcontrib>Estevez, Samuel Vega</creatorcontrib><creatorcontrib>Hendricks, Shane</creatorcontrib><creatorcontrib>Woodruff, Andrew L</creatorcontrib><creatorcontrib>Buscaino, Alessia</creatorcontrib><creatorcontrib>Anderson, Matthew Z</creatorcontrib><creatorcontrib>Sullivan, Derek J</creatorcontrib><creatorcontrib>Moran, Gary P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fletcher, Jessica</au><au>O'Connor-Moneley, James</au><au>Frawley, Dean</au><au>Flanagan, Peter R</au><au>Alaalm, Leenah</au><au>Menendez-Manjon, Pilar</au><au>Estevez, Samuel Vega</au><au>Hendricks, Shane</au><au>Woodruff, Andrew L</au><au>Buscaino, Alessia</au><au>Anderson, Matthew Z</au><au>Sullivan, Derek J</au><au>Moran, Gary P</au><au>Forche, Anja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>e1011082</spage><epage>e1011082</epage><pages>e1011082-e1011082</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38048294</pmid><doi>10.1371/journal.pgen.1011082</doi><orcidid>https://orcid.org/0000-0002-1704-3168</orcidid><orcidid>https://orcid.org/0000-0003-0469-1788</orcidid><orcidid>https://orcid.org/0000-0003-1683-2170</orcidid><orcidid>https://orcid.org/0000-0002-5818-360X</orcidid><orcidid>https://orcid.org/0000-0002-4690-0560</orcidid><orcidid>https://orcid.org/0000-0002-6593-0319</orcidid><orcidid>https://orcid.org/0000-0003-2170-0420</orcidid><orcidid>https://orcid.org/0000-0003-0195-9697</orcidid><orcidid>https://orcid.org/0000-0002-8371-5233</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2023-12, Vol.19 (12), p.e1011082-e1011082
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_3069178952
source Publicly Available Content Database; PubMed Central
subjects Biology and Life Sciences
Candida albicans
Candida albicans - metabolism
Carbohydrate metabolism
Cellular stress response
Chromosomes
Complementation
CRISPR
CRISPR-Cas Systems - genetics
Fungal Proteins - genetics
Fungal Proteins - metabolism
Galactose
Gene Deletion
Gene expression
Gene Expression Regulation, Fungal
Genes
Genomes
Glycolysis
Humans
Hyphae
Kinases
Localization
Medicine and Health Sciences
Mutagenesis
Mutants
Oxidative stress
Phenotype
Phenotypes
Proteins
Research and Analysis Methods
RNA polymerase
Transcriptomics
Virulence
Yeast
title Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20the%20Candida%20albicans%20TLO%20gene%20family%20using%20CRISPR-Cas9%20mutagenesis%20allows%20characterisation%20of%20functional%20differences%20in%20%CE%B1-,%20%CE%B2-%20and%20%CE%B3-%20TLO%20gene%20function&rft.jtitle=PLoS%20genetics&rft.au=Fletcher,%20Jessica&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=e1011082&rft.epage=e1011082&rft.pages=e1011082-e1011082&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011082&rft_dat=%3Cproquest_plos_%3E3069178952%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178952&rft_id=info:pmid/38048294&rfr_iscdi=true