Loading…
Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function
The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II lo...
Saved in:
Published in: | PLoS genetics 2023-12, Vol.19 (12), p.e1011082-e1011082 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73 |
container_end_page | e1011082 |
container_issue | 12 |
container_start_page | e1011082 |
container_title | PLoS genetics |
container_volume | 19 |
creator | Fletcher, Jessica O'Connor-Moneley, James Frawley, Dean Flanagan, Peter R Alaalm, Leenah Menendez-Manjon, Pilar Estevez, Samuel Vega Hendricks, Shane Woodruff, Andrew L Buscaino, Alessia Anderson, Matthew Z Sullivan, Derek J Moran, Gary P |
description | The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans. |
doi_str_mv | 10.1371/journal.pgen.1011082 |
format | article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6874864e6b33490da8798f1d41d1bd22</doaj_id><sourcerecordid>3069178952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</originalsourceid><addsrcrecordid>eNptks1uEzEUhUcIREvhDRBYYsOCCfbYM7ZXCIW_SJGKSllbd_yTOHI8rT0D6guxB94jz8SEJFWKWPnK_s4591q3KJ4SPCGUk9erbkgRwuRqYeOEYEKwqO4Vp6SuackZZveP6pPiUc4rjGktJH9YnFCBmagkOy1-vLPB9r6LqHOoX1o0hWi8AQSh9RpiRpfzczRGWORg7cMNGrKPCzS9mH35fFFOIUu0HnrYEtnnURa67xnpJSTQvU0-w8HdDVFvawjIeOdsslHbjHxEm5_lK7T5VaIxG21-l0eZe83j4oGDkO2T_XlWfP3w_nL6qZyff5xN385LzXjTl7ICIbQQjXDWOnC10JJK3RLbcitxYwyBhmlrNGMS2gabmsu6al2NCZctp2fF853vVeiy2n9xVhQ3knAxoiMx2xGmg5W6Sn4N6UZ14NXfiy4tFKTe62BVIzgTDbNNSymT2IDgUjhiGDGkNdXW680-bWjXY1M29gnCHdO7L9Ev1aL7pgjmFSFSjg4v9w6pux5s7tXaZ21DgGi7IatKSEFJxSo6oi_-Qf8_HttROnU5J-tuuyFYbffuoFLbvVP7vRtlz44nuRUdFo3-AZV62Us</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178952</pqid></control><display><type>article</type><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P</creator><contributor>Forche, Anja</contributor><creatorcontrib>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P ; Forche, Anja</creatorcontrib><description>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011082</identifier><identifier>PMID: 38048294</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Candida albicans ; Candida albicans - metabolism ; Carbohydrate metabolism ; Cellular stress response ; Chromosomes ; Complementation ; CRISPR ; CRISPR-Cas Systems - genetics ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Galactose ; Gene Deletion ; Gene expression ; Gene Expression Regulation, Fungal ; Genes ; Genomes ; Glycolysis ; Humans ; Hyphae ; Kinases ; Localization ; Medicine and Health Sciences ; Mutagenesis ; Mutants ; Oxidative stress ; Phenotype ; Phenotypes ; Proteins ; Research and Analysis Methods ; RNA polymerase ; Transcriptomics ; Virulence ; Yeast</subject><ispartof>PLoS genetics, 2023-12, Vol.19 (12), p.e1011082-e1011082</ispartof><rights>Copyright: © 2023 Fletcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>2023 Fletcher et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 Fletcher et al 2023 Fletcher et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</cites><orcidid>0000-0002-1704-3168 ; 0000-0003-0469-1788 ; 0000-0003-1683-2170 ; 0000-0002-5818-360X ; 0000-0002-4690-0560 ; 0000-0002-6593-0319 ; 0000-0003-2170-0420 ; 0000-0003-0195-9697 ; 0000-0002-8371-5233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178952/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178952?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38048294$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Forche, Anja</contributor><creatorcontrib>Fletcher, Jessica</creatorcontrib><creatorcontrib>O'Connor-Moneley, James</creatorcontrib><creatorcontrib>Frawley, Dean</creatorcontrib><creatorcontrib>Flanagan, Peter R</creatorcontrib><creatorcontrib>Alaalm, Leenah</creatorcontrib><creatorcontrib>Menendez-Manjon, Pilar</creatorcontrib><creatorcontrib>Estevez, Samuel Vega</creatorcontrib><creatorcontrib>Hendricks, Shane</creatorcontrib><creatorcontrib>Woodruff, Andrew L</creatorcontrib><creatorcontrib>Buscaino, Alessia</creatorcontrib><creatorcontrib>Anderson, Matthew Z</creatorcontrib><creatorcontrib>Sullivan, Derek J</creatorcontrib><creatorcontrib>Moran, Gary P</creatorcontrib><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</description><subject>Biology and Life Sciences</subject><subject>Candida albicans</subject><subject>Candida albicans - metabolism</subject><subject>Carbohydrate metabolism</subject><subject>Cellular stress response</subject><subject>Chromosomes</subject><subject>Complementation</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Galactose</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genomes</subject><subject>Glycolysis</subject><subject>Humans</subject><subject>Hyphae</subject><subject>Kinases</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Mutagenesis</subject><subject>Mutants</subject><subject>Oxidative stress</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>Transcriptomics</subject><subject>Virulence</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1uEzEUhUcIREvhDRBYYsOCCfbYM7ZXCIW_SJGKSllbd_yTOHI8rT0D6guxB94jz8SEJFWKWPnK_s4591q3KJ4SPCGUk9erbkgRwuRqYeOEYEKwqO4Vp6SuackZZveP6pPiUc4rjGktJH9YnFCBmagkOy1-vLPB9r6LqHOoX1o0hWi8AQSh9RpiRpfzczRGWORg7cMNGrKPCzS9mH35fFFOIUu0HnrYEtnnURa67xnpJSTQvU0-w8HdDVFvawjIeOdsslHbjHxEm5_lK7T5VaIxG21-l0eZe83j4oGDkO2T_XlWfP3w_nL6qZyff5xN385LzXjTl7ICIbQQjXDWOnC10JJK3RLbcitxYwyBhmlrNGMS2gabmsu6al2NCZctp2fF853vVeiy2n9xVhQ3knAxoiMx2xGmg5W6Sn4N6UZ14NXfiy4tFKTe62BVIzgTDbNNSymT2IDgUjhiGDGkNdXW680-bWjXY1M29gnCHdO7L9Ev1aL7pgjmFSFSjg4v9w6pux5s7tXaZ21DgGi7IatKSEFJxSo6oi_-Qf8_HttROnU5J-tuuyFYbffuoFLbvVP7vRtlz44nuRUdFo3-AZV62Us</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Fletcher, Jessica</creator><creator>O'Connor-Moneley, James</creator><creator>Frawley, Dean</creator><creator>Flanagan, Peter R</creator><creator>Alaalm, Leenah</creator><creator>Menendez-Manjon, Pilar</creator><creator>Estevez, Samuel Vega</creator><creator>Hendricks, Shane</creator><creator>Woodruff, Andrew L</creator><creator>Buscaino, Alessia</creator><creator>Anderson, Matthew Z</creator><creator>Sullivan, Derek J</creator><creator>Moran, Gary P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1704-3168</orcidid><orcidid>https://orcid.org/0000-0003-0469-1788</orcidid><orcidid>https://orcid.org/0000-0003-1683-2170</orcidid><orcidid>https://orcid.org/0000-0002-5818-360X</orcidid><orcidid>https://orcid.org/0000-0002-4690-0560</orcidid><orcidid>https://orcid.org/0000-0002-6593-0319</orcidid><orcidid>https://orcid.org/0000-0003-2170-0420</orcidid><orcidid>https://orcid.org/0000-0003-0195-9697</orcidid><orcidid>https://orcid.org/0000-0002-8371-5233</orcidid></search><sort><creationdate>20231201</creationdate><title>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</title><author>Fletcher, Jessica ; O'Connor-Moneley, James ; Frawley, Dean ; Flanagan, Peter R ; Alaalm, Leenah ; Menendez-Manjon, Pilar ; Estevez, Samuel Vega ; Hendricks, Shane ; Woodruff, Andrew L ; Buscaino, Alessia ; Anderson, Matthew Z ; Sullivan, Derek J ; Moran, Gary P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biology and Life Sciences</topic><topic>Candida albicans</topic><topic>Candida albicans - metabolism</topic><topic>Carbohydrate metabolism</topic><topic>Cellular stress response</topic><topic>Chromosomes</topic><topic>Complementation</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Galactose</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genomes</topic><topic>Glycolysis</topic><topic>Humans</topic><topic>Hyphae</topic><topic>Kinases</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Mutagenesis</topic><topic>Mutants</topic><topic>Oxidative stress</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>Transcriptomics</topic><topic>Virulence</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fletcher, Jessica</creatorcontrib><creatorcontrib>O'Connor-Moneley, James</creatorcontrib><creatorcontrib>Frawley, Dean</creatorcontrib><creatorcontrib>Flanagan, Peter R</creatorcontrib><creatorcontrib>Alaalm, Leenah</creatorcontrib><creatorcontrib>Menendez-Manjon, Pilar</creatorcontrib><creatorcontrib>Estevez, Samuel Vega</creatorcontrib><creatorcontrib>Hendricks, Shane</creatorcontrib><creatorcontrib>Woodruff, Andrew L</creatorcontrib><creatorcontrib>Buscaino, Alessia</creatorcontrib><creatorcontrib>Anderson, Matthew Z</creatorcontrib><creatorcontrib>Sullivan, Derek J</creatorcontrib><creatorcontrib>Moran, Gary P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fletcher, Jessica</au><au>O'Connor-Moneley, James</au><au>Frawley, Dean</au><au>Flanagan, Peter R</au><au>Alaalm, Leenah</au><au>Menendez-Manjon, Pilar</au><au>Estevez, Samuel Vega</au><au>Hendricks, Shane</au><au>Woodruff, Andrew L</au><au>Buscaino, Alessia</au><au>Anderson, Matthew Z</au><au>Sullivan, Derek J</au><au>Moran, Gary P</au><au>Forche, Anja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>e1011082</spage><epage>e1011082</epage><pages>e1011082-e1011082</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38048294</pmid><doi>10.1371/journal.pgen.1011082</doi><orcidid>https://orcid.org/0000-0002-1704-3168</orcidid><orcidid>https://orcid.org/0000-0003-0469-1788</orcidid><orcidid>https://orcid.org/0000-0003-1683-2170</orcidid><orcidid>https://orcid.org/0000-0002-5818-360X</orcidid><orcidid>https://orcid.org/0000-0002-4690-0560</orcidid><orcidid>https://orcid.org/0000-0002-6593-0319</orcidid><orcidid>https://orcid.org/0000-0003-2170-0420</orcidid><orcidid>https://orcid.org/0000-0003-0195-9697</orcidid><orcidid>https://orcid.org/0000-0002-8371-5233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2023-12, Vol.19 (12), p.e1011082-e1011082 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_3069178952 |
source | Publicly Available Content Database; PubMed Central |
subjects | Biology and Life Sciences Candida albicans Candida albicans - metabolism Carbohydrate metabolism Cellular stress response Chromosomes Complementation CRISPR CRISPR-Cas Systems - genetics Fungal Proteins - genetics Fungal Proteins - metabolism Galactose Gene Deletion Gene expression Gene Expression Regulation, Fungal Genes Genomes Glycolysis Humans Hyphae Kinases Localization Medicine and Health Sciences Mutagenesis Mutants Oxidative stress Phenotype Phenotypes Proteins Research and Analysis Methods RNA polymerase Transcriptomics Virulence Yeast |
title | Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion%20of%20the%20Candida%20albicans%20TLO%20gene%20family%20using%20CRISPR-Cas9%20mutagenesis%20allows%20characterisation%20of%20functional%20differences%20in%20%CE%B1-,%20%CE%B2-%20and%20%CE%B3-%20TLO%20gene%20function&rft.jtitle=PLoS%20genetics&rft.au=Fletcher,%20Jessica&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=e1011082&rft.epage=e1011082&rft.pages=e1011082-e1011082&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011082&rft_dat=%3Cproquest_plos_%3E3069178952%3C/proquest_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c476t-92a88c8868feefaf58c939cb1eb7e906dd1a64cedc449ab60d57952bf50179b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178952&rft_id=info:pmid/38048294&rfr_iscdi=true |