Loading…
Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment
The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their poten...
Saved in:
Published in: | PLoS computational biology 2024-05, Vol.20 (5), p.e1012113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73 |
container_end_page | |
container_issue | 5 |
container_start_page | e1012113 |
container_title | PLoS computational biology |
container_volume | 20 |
creator | Wang, Meng Yan, Xinyue Dong, Yanan Li, Xiaoqin Gao, Bin |
description | The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies. |
doi_str_mv | 10.1371/journal.pcbi.1012113 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796130092</galeid><doaj_id>oai_doaj_org_article_1d14fa3c80034f61b6b9522c45d2a892</doaj_id><sourcerecordid>A796130092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggscQMXWeI4xytUVRxWKiBxuLbGzjjrKrEX21nRB-C9cXbTqot6g3xhy_7mn5lfniR5TrMVZTV9e2UnZ2BYbaXQK5rRnFL2IDmlZcnSmpXNwzvnk-SJ91dZFo9t9Tg5YU2dN6zKT5M_n0FutEEyIDijTU_AdGSchqBTO2rpSQcBiMMdwkA6p3foSI8GUwEeI2kHlNMAjvhJhOsteqIN2eAWgpU4DPsnCU5qY0cgyjqydSi119aQ4BDCiCY8TR4pGDw-W_az5OeH9z8uPqWXXz-uL84vU1lRGlJFhWiVKGSrWNVkeZ3JNocKSkFlJpqG1igLlEpCja0q6lIqBkp0HSpWq65mZ8nLg-52sJ4vDnrOsqqlddOWVSTWB6KzcMW3To_grrkFzfcX1vUcXNByQE47Wihgsom-FqqiohJtmeeyKLscmjaPWu-WbJMYsZOxUQfDkejxi9Eb3tsdpzSPJbG5mteLgrO_JvSBj9rPtoJBO82Fl6ytaZYXEX31D3p_ewvVQ-xAG2VjYjmL8vO6rSjLsn3hq3uouDqMX8IaVDreHwW8OQqITMDfoYfJe77-_u0_2C_HbHFgpbPeO1S35tGMz1Nw0ySfp4AvUxDDXtw1_jbo5tuzv9rZBjI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178956</pqid></control><display><type>article</type><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin</creator><contributor>Finley, Stacey D.</contributor><creatorcontrib>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin ; Finley, Stacey D.</creatorcontrib><description>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012113</identifier><identifier>PMID: 38728362</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; B cells ; Biological analysis ; Biology and Life Sciences ; Biomarkers, Tumor - genetics ; Cancer ; Cancer therapies ; Carcinoma, Hepatocellular - classification ; Carcinoma, Hepatocellular - genetics ; Care and treatment ; Cell cycle ; Classification ; Computational Biology - methods ; Computer and Information Sciences ; Copy number ; Development and progression ; DNA Copy Number Variations - genetics ; DNA methylation ; Drug therapy ; Epigenetics ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Genes ; Genetic aspects ; Genomics ; Genomics - methods ; Health aspects ; Hepatocellular carcinoma ; Hepatoma ; Heterogeneity ; Humans ; Liver cancer ; Liver Neoplasms - classification ; Liver Neoplasms - genetics ; Machine Learning ; Medical prognosis ; Medicine and Health Sciences ; Metabolism ; Molecular genetics ; Molecular modelling ; Multiomics ; Mutation ; Mutation - genetics ; Pathogenesis ; Performance prediction ; Precision Medicine - methods ; Prognosis ; Proteins ; Technology application ; Temsirolimus ; Therapeutic targets ; Transcriptomics</subject><ispartof>PLoS computational biology, 2024-05, Vol.20 (5), p.e1012113</ispartof><rights>Copyright: © 2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Wang et al 2024 Wang et al</rights><rights>2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</cites><orcidid>0009-0001-5963-2462 ; 0000-0002-5799-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178956/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38728362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Finley, Stacey D.</contributor><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yan, Xinyue</creatorcontrib><creatorcontrib>Dong, Yanan</creatorcontrib><creatorcontrib>Li, Xiaoqin</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>B cells</subject><subject>Biological analysis</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinoma, Hepatocellular - classification</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Classification</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Copy number</subject><subject>Development and progression</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA methylation</subject><subject>Drug therapy</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - classification</subject><subject>Liver Neoplasms - genetics</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Molecular genetics</subject><subject>Molecular modelling</subject><subject>Multiomics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Pathogenesis</subject><subject>Performance prediction</subject><subject>Precision Medicine - methods</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Technology application</subject><subject>Temsirolimus</subject><subject>Therapeutic targets</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggscQMXWeI4xytUVRxWKiBxuLbGzjjrKrEX21nRB-C9cXbTqot6g3xhy_7mn5lfniR5TrMVZTV9e2UnZ2BYbaXQK5rRnFL2IDmlZcnSmpXNwzvnk-SJ91dZFo9t9Tg5YU2dN6zKT5M_n0FutEEyIDijTU_AdGSchqBTO2rpSQcBiMMdwkA6p3foSI8GUwEeI2kHlNMAjvhJhOsteqIN2eAWgpU4DPsnCU5qY0cgyjqydSi119aQ4BDCiCY8TR4pGDw-W_az5OeH9z8uPqWXXz-uL84vU1lRGlJFhWiVKGSrWNVkeZ3JNocKSkFlJpqG1igLlEpCja0q6lIqBkp0HSpWq65mZ8nLg-52sJ4vDnrOsqqlddOWVSTWB6KzcMW3To_grrkFzfcX1vUcXNByQE47Wihgsom-FqqiohJtmeeyKLscmjaPWu-WbJMYsZOxUQfDkejxi9Eb3tsdpzSPJbG5mteLgrO_JvSBj9rPtoJBO82Fl6ytaZYXEX31D3p_ewvVQ-xAG2VjYjmL8vO6rSjLsn3hq3uouDqMX8IaVDreHwW8OQqITMDfoYfJe77-_u0_2C_HbHFgpbPeO1S35tGMz1Nw0ySfp4AvUxDDXtw1_jbo5tuzv9rZBjI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Meng</creator><creator>Yan, Xinyue</creator><creator>Dong, Yanan</creator><creator>Li, Xiaoqin</creator><creator>Gao, Bin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-5963-2462</orcidid><orcidid>https://orcid.org/0000-0002-5799-1971</orcidid></search><sort><creationdate>20240501</creationdate><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><author>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>B cells</topic><topic>Biological analysis</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinoma, Hepatocellular - classification</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Classification</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Copy number</topic><topic>Development and progression</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA methylation</topic><topic>Drug therapy</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - classification</topic><topic>Liver Neoplasms - genetics</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Molecular genetics</topic><topic>Molecular modelling</topic><topic>Multiomics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Pathogenesis</topic><topic>Performance prediction</topic><topic>Precision Medicine - methods</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Technology application</topic><topic>Temsirolimus</topic><topic>Therapeutic targets</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yan, Xinyue</creatorcontrib><creatorcontrib>Dong, Yanan</creatorcontrib><creatorcontrib>Li, Xiaoqin</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng</au><au>Yan, Xinyue</au><au>Dong, Yanan</au><au>Li, Xiaoqin</au><au>Gao, Bin</au><au>Finley, Stacey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>e1012113</spage><pages>e1012113-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38728362</pmid><doi>10.1371/journal.pcbi.1012113</doi><tpages>e1012113</tpages><orcidid>https://orcid.org/0009-0001-5963-2462</orcidid><orcidid>https://orcid.org/0000-0002-5799-1971</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2024-05, Vol.20 (5), p.e1012113 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_3069178956 |
source | PubMed (Medline); Publicly Available Content Database |
subjects | Algorithms Analysis B cells Biological analysis Biology and Life Sciences Biomarkers, Tumor - genetics Cancer Cancer therapies Carcinoma, Hepatocellular - classification Carcinoma, Hepatocellular - genetics Care and treatment Cell cycle Classification Computational Biology - methods Computer and Information Sciences Copy number Development and progression DNA Copy Number Variations - genetics DNA methylation Drug therapy Epigenetics Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Neoplastic - genetics Genes Genetic aspects Genomics Genomics - methods Health aspects Hepatocellular carcinoma Hepatoma Heterogeneity Humans Liver cancer Liver Neoplasms - classification Liver Neoplasms - genetics Machine Learning Medical prognosis Medicine and Health Sciences Metabolism Molecular genetics Molecular modelling Multiomics Mutation Mutation - genetics Pathogenesis Performance prediction Precision Medicine - methods Prognosis Proteins Technology application Temsirolimus Therapeutic targets Transcriptomics |
title | Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20multi-omics%20data%20reveal%20driver%20gene-based%20molecular%20subtypes%20in%20hepatocellular%20carcinoma%20for%20precision%20treatment&rft.jtitle=PLoS%20computational%20biology&rft.au=Wang,%20Meng&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=e1012113&rft.pages=e1012113-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012113&rft_dat=%3Cgale_plos_%3EA796130092%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178956&rft_id=info:pmid/38728362&rft_galeid=A796130092&rfr_iscdi=true |