Loading…

Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment

The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their poten...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2024-05, Vol.20 (5), p.e1012113
Main Authors: Wang, Meng, Yan, Xinyue, Dong, Yanan, Li, Xiaoqin, Gao, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73
container_end_page
container_issue 5
container_start_page e1012113
container_title PLoS computational biology
container_volume 20
creator Wang, Meng
Yan, Xinyue
Dong, Yanan
Li, Xiaoqin
Gao, Bin
description The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.
doi_str_mv 10.1371/journal.pcbi.1012113
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069178956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796130092</galeid><doaj_id>oai_doaj_org_article_1d14fa3c80034f61b6b9522c45d2a892</doaj_id><sourcerecordid>A796130092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggscQMXWeI4xytUVRxWKiBxuLbGzjjrKrEX21nRB-C9cXbTqot6g3xhy_7mn5lfniR5TrMVZTV9e2UnZ2BYbaXQK5rRnFL2IDmlZcnSmpXNwzvnk-SJ91dZFo9t9Tg5YU2dN6zKT5M_n0FutEEyIDijTU_AdGSchqBTO2rpSQcBiMMdwkA6p3foSI8GUwEeI2kHlNMAjvhJhOsteqIN2eAWgpU4DPsnCU5qY0cgyjqydSi119aQ4BDCiCY8TR4pGDw-W_az5OeH9z8uPqWXXz-uL84vU1lRGlJFhWiVKGSrWNVkeZ3JNocKSkFlJpqG1igLlEpCja0q6lIqBkp0HSpWq65mZ8nLg-52sJ4vDnrOsqqlddOWVSTWB6KzcMW3To_grrkFzfcX1vUcXNByQE47Wihgsom-FqqiohJtmeeyKLscmjaPWu-WbJMYsZOxUQfDkejxi9Eb3tsdpzSPJbG5mteLgrO_JvSBj9rPtoJBO82Fl6ytaZYXEX31D3p_ewvVQ-xAG2VjYjmL8vO6rSjLsn3hq3uouDqMX8IaVDreHwW8OQqITMDfoYfJe77-_u0_2C_HbHFgpbPeO1S35tGMz1Nw0ySfp4AvUxDDXtw1_jbo5tuzv9rZBjI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069178956</pqid></control><display><type>article</type><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><creator>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin</creator><contributor>Finley, Stacey D.</contributor><creatorcontrib>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin ; Finley, Stacey D.</creatorcontrib><description>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012113</identifier><identifier>PMID: 38728362</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; B cells ; Biological analysis ; Biology and Life Sciences ; Biomarkers, Tumor - genetics ; Cancer ; Cancer therapies ; Carcinoma, Hepatocellular - classification ; Carcinoma, Hepatocellular - genetics ; Care and treatment ; Cell cycle ; Classification ; Computational Biology - methods ; Computer and Information Sciences ; Copy number ; Development and progression ; DNA Copy Number Variations - genetics ; DNA methylation ; Drug therapy ; Epigenetics ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Neoplastic - genetics ; Genes ; Genetic aspects ; Genomics ; Genomics - methods ; Health aspects ; Hepatocellular carcinoma ; Hepatoma ; Heterogeneity ; Humans ; Liver cancer ; Liver Neoplasms - classification ; Liver Neoplasms - genetics ; Machine Learning ; Medical prognosis ; Medicine and Health Sciences ; Metabolism ; Molecular genetics ; Molecular modelling ; Multiomics ; Mutation ; Mutation - genetics ; Pathogenesis ; Performance prediction ; Precision Medicine - methods ; Prognosis ; Proteins ; Technology application ; Temsirolimus ; Therapeutic targets ; Transcriptomics</subject><ispartof>PLoS computational biology, 2024-05, Vol.20 (5), p.e1012113</ispartof><rights>Copyright: © 2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Wang et al 2024 Wang et al</rights><rights>2024 Wang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</cites><orcidid>0009-0001-5963-2462 ; 0000-0002-5799-1971</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069178956/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069178956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38728362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Finley, Stacey D.</contributor><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yan, Xinyue</creatorcontrib><creatorcontrib>Dong, Yanan</creatorcontrib><creatorcontrib>Li, Xiaoqin</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>B cells</subject><subject>Biological analysis</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Carcinoma, Hepatocellular - classification</subject><subject>Carcinoma, Hepatocellular - genetics</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Classification</subject><subject>Computational Biology - methods</subject><subject>Computer and Information Sciences</subject><subject>Copy number</subject><subject>Development and progression</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA methylation</subject><subject>Drug therapy</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Neoplastic - genetics</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatoma</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - classification</subject><subject>Liver Neoplasms - genetics</subject><subject>Machine Learning</subject><subject>Medical prognosis</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Molecular genetics</subject><subject>Molecular modelling</subject><subject>Multiomics</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Pathogenesis</subject><subject>Performance prediction</subject><subject>Precision Medicine - methods</subject><subject>Prognosis</subject><subject>Proteins</subject><subject>Technology application</subject><subject>Temsirolimus</subject><subject>Therapeutic targets</subject><subject>Transcriptomics</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggscQMXWeI4xytUVRxWKiBxuLbGzjjrKrEX21nRB-C9cXbTqot6g3xhy_7mn5lfniR5TrMVZTV9e2UnZ2BYbaXQK5rRnFL2IDmlZcnSmpXNwzvnk-SJ91dZFo9t9Tg5YU2dN6zKT5M_n0FutEEyIDijTU_AdGSchqBTO2rpSQcBiMMdwkA6p3foSI8GUwEeI2kHlNMAjvhJhOsteqIN2eAWgpU4DPsnCU5qY0cgyjqydSi119aQ4BDCiCY8TR4pGDw-W_az5OeH9z8uPqWXXz-uL84vU1lRGlJFhWiVKGSrWNVkeZ3JNocKSkFlJpqG1igLlEpCja0q6lIqBkp0HSpWq65mZ8nLg-52sJ4vDnrOsqqlddOWVSTWB6KzcMW3To_grrkFzfcX1vUcXNByQE47Wihgsom-FqqiohJtmeeyKLscmjaPWu-WbJMYsZOxUQfDkejxi9Eb3tsdpzSPJbG5mteLgrO_JvSBj9rPtoJBO82Fl6ytaZYXEX31D3p_ewvVQ-xAG2VjYjmL8vO6rSjLsn3hq3uouDqMX8IaVDreHwW8OQqITMDfoYfJe77-_u0_2C_HbHFgpbPeO1S35tGMz1Nw0ySfp4AvUxDDXtw1_jbo5tuzv9rZBjI</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wang, Meng</creator><creator>Yan, Xinyue</creator><creator>Dong, Yanan</creator><creator>Li, Xiaoqin</creator><creator>Gao, Bin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0001-5963-2462</orcidid><orcidid>https://orcid.org/0000-0002-5799-1971</orcidid></search><sort><creationdate>20240501</creationdate><title>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</title><author>Wang, Meng ; Yan, Xinyue ; Dong, Yanan ; Li, Xiaoqin ; Gao, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>B cells</topic><topic>Biological analysis</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Carcinoma, Hepatocellular - classification</topic><topic>Carcinoma, Hepatocellular - genetics</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Classification</topic><topic>Computational Biology - methods</topic><topic>Computer and Information Sciences</topic><topic>Copy number</topic><topic>Development and progression</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA methylation</topic><topic>Drug therapy</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Neoplastic - genetics</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatoma</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - classification</topic><topic>Liver Neoplasms - genetics</topic><topic>Machine Learning</topic><topic>Medical prognosis</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Molecular genetics</topic><topic>Molecular modelling</topic><topic>Multiomics</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Pathogenesis</topic><topic>Performance prediction</topic><topic>Precision Medicine - methods</topic><topic>Prognosis</topic><topic>Proteins</topic><topic>Technology application</topic><topic>Temsirolimus</topic><topic>Therapeutic targets</topic><topic>Transcriptomics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng</creatorcontrib><creatorcontrib>Yan, Xinyue</creatorcontrib><creatorcontrib>Dong, Yanan</creatorcontrib><creatorcontrib>Li, Xiaoqin</creatorcontrib><creatorcontrib>Gao, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng</au><au>Yan, Xinyue</au><au>Dong, Yanan</au><au>Li, Xiaoqin</au><au>Gao, Bin</au><au>Finley, Stacey D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>e1012113</spage><pages>e1012113-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The heterogeneity of Hepatocellular Carcinoma (HCC) poses a barrier to effective treatment. Stratifying highly heterogeneous HCC into molecular subtypes with similar features is crucial for personalized anti-tumor therapies. Although driver genes play pivotal roles in cancer progression, their potential in HCC subtyping has been largely overlooked. This study aims to utilize driver genes to construct HCC subtype models and unravel their molecular mechanisms. Utilizing a novel computational framework, we expanded the initially identified 96 driver genes to 1192 based on mutational aspects and an additional 233 considering driver dysregulation. These genes were subsequently employed as stratification markers for further analyses. A novel multi-omics subtype classification algorithm was developed, leveraging mutation and expression data of the identified stratification genes. This algorithm successfully categorized HCC into two distinct subtypes, CLASS A and CLASS B, demonstrating significant differences in survival outcomes. Integrating multi-omics and single-cell data unveiled substantial distinctions between these subtypes regarding transcriptomics, mutations, copy number variations, and epigenomics. Moreover, our prognostic model exhibited excellent predictive performance in training and external validation cohorts. Finally, a 10-gene classification model for these subtypes identified TTK as a promising therapeutic target with robust classification capabilities. This comprehensive study provides a novel perspective on HCC stratification, offering crucial insights for a deeper understanding of its pathogenesis and the development of promising treatment strategies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38728362</pmid><doi>10.1371/journal.pcbi.1012113</doi><tpages>e1012113</tpages><orcidid>https://orcid.org/0009-0001-5963-2462</orcidid><orcidid>https://orcid.org/0000-0002-5799-1971</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-05, Vol.20 (5), p.e1012113
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069178956
source PubMed (Medline); Publicly Available Content Database
subjects Algorithms
Analysis
B cells
Biological analysis
Biology and Life Sciences
Biomarkers, Tumor - genetics
Cancer
Cancer therapies
Carcinoma, Hepatocellular - classification
Carcinoma, Hepatocellular - genetics
Care and treatment
Cell cycle
Classification
Computational Biology - methods
Computer and Information Sciences
Copy number
Development and progression
DNA Copy Number Variations - genetics
DNA methylation
Drug therapy
Epigenetics
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Neoplastic - genetics
Genes
Genetic aspects
Genomics
Genomics - methods
Health aspects
Hepatocellular carcinoma
Hepatoma
Heterogeneity
Humans
Liver cancer
Liver Neoplasms - classification
Liver Neoplasms - genetics
Machine Learning
Medical prognosis
Medicine and Health Sciences
Metabolism
Molecular genetics
Molecular modelling
Multiomics
Mutation
Mutation - genetics
Pathogenesis
Performance prediction
Precision Medicine - methods
Prognosis
Proteins
Technology application
Temsirolimus
Therapeutic targets
Transcriptomics
title Machine learning and multi-omics data reveal driver gene-based molecular subtypes in hepatocellular carcinoma for precision treatment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20multi-omics%20data%20reveal%20driver%20gene-based%20molecular%20subtypes%20in%20hepatocellular%20carcinoma%20for%20precision%20treatment&rft.jtitle=PLoS%20computational%20biology&rft.au=Wang,%20Meng&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=e1012113&rft.pages=e1012113-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012113&rft_dat=%3Cgale_plos_%3EA796130092%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c611t-f1bb9fb4c9f3680270c92a6a5b1c0b8817ec4ecfca7e9f475cf3afbddef37fd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069178956&rft_id=info:pmid/38728362&rft_galeid=A796130092&rfr_iscdi=true