Loading…

Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data

Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold stand...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2024-05, Vol.20 (5), p.e1012139
Main Authors: Foster, Zachary S L, Tupper, Andrew S, Press, Caroline M, Grünwald, Niklaus J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c555t-9d5c9df775c86ff8efe3e0b4a5d475c334933d747ed15dab1bb4ab83ec46f4f73
container_end_page
container_issue 5
container_start_page e1012139
container_title PLoS computational biology
container_volume 20
creator Foster, Zachary S L
Tupper, Andrew S
Press, Caroline M
Grünwald, Niklaus J
description Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked by conserved regions where primers can be designed requires extensive bioinformatic analyses of genome sequences. We developed the Python package krisp to aid in the discovery of primers and diagnostic sequences that differentiate groups of samples from each other, using either unaligned genome sequences or a variant call format (VCF) file as input. Krisp has been optimized to handle large datasets by using efficient algorithms that run in near linear time, use minimal RAM, and leverage parallel processing when available. The validity of krisp results has been demonstrated in the laboratory with the successful design of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora ramorum from closely related Phytophthora species. Krisp is released open source under a permissive license with all the documentation needed to quickly design CRISPR-Cas diagnostic assays.
doi_str_mv 10.1371/journal.pcbi.1012139
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A796130101</galeid><doaj_id>oai_doaj_org_article_bc0a6316d5b94ecaa08d92cfccb39a66</doaj_id><sourcerecordid>A796130101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-9d5c9df775c86ff8efe3e0b4a5d475c334933d747ed15dab1bb4ab83ec46f4f73</originalsourceid><addsrcrecordid>eNqVkk2P0zAQhiMEYpeFf4DAEhc4tNh1nMTcqoqPihWsunC2JvY4dUnsEqeCXvnluDS7omgvyAePxs874xm9WfaU0SnjJXu9CbveQzvd6tpNGWUzxuW97JwJwSclF9X9v-Kz7FGMG0pTKIuH2RmvyqKaCXqe_frYu7h9Q-bkaj-sgydb0N-gQTIEAs4Q58mwRmIwusaTYMlitby-WhHwhkC3bZ11GgYX_KSGiIYYB40PcXCaQIywj8T2oSM_1qFF0qAPHZKI33fotfMNMTDA4-yBhTbik_G-yL6-e_tl8WFy-fn9cjG_nGghxDCRRmhpbFkKXRXWVmiRI61zECZPOc5zybkp8xINEwZqVqe3uuKo88LmtuQX2fNj3W0bohrXFxWnhWSlzGc8EcsjYQJs1LZ3HfR7FcCpP4nQNwr6NFqLqtYUCs4KI2qZowaglZEzbbWuuYSiSLVejt36kMaNg-pc1Ni24DHsDm1FWciZ4DShL_5B7_7cSDWQ-jtvw9CDPhRV81IWjNNkgkRN76DSMdg5HTxal_InglcngsQM-HNoYBejWl6v_oP9dMrmR1b3IcYe7e0-GVUHA98MqQ4GVqOBk-zZuItd3aG5Fd04lv8GyR_rjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179423</pqid></control><display><type>article</type><title>Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Foster, Zachary S L ; Tupper, Andrew S ; Press, Caroline M ; Grünwald, Niklaus J</creator><contributor>Bromberg, Yana</contributor><creatorcontrib>Foster, Zachary S L ; Tupper, Andrew S ; Press, Caroline M ; Grünwald, Niklaus J ; Bromberg, Yana</creatorcontrib><description>Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked by conserved regions where primers can be designed requires extensive bioinformatic analyses of genome sequences. We developed the Python package krisp to aid in the discovery of primers and diagnostic sequences that differentiate groups of samples from each other, using either unaligned genome sequences or a variant call format (VCF) file as input. Krisp has been optimized to handle large datasets by using efficient algorithms that run in near linear time, use minimal RAM, and leverage parallel processing when available. The validity of krisp results has been demonstrated in the laboratory with the successful design of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora ramorum from closely related Phytophthora species. Krisp is released open source under a permissive license with all the documentation needed to quickly design CRISPR-Cas diagnostic assays.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1012139</identifier><identifier>PMID: 38768250</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Assaying ; Computational Biology - methods ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - virology ; CRISPR ; CRISPR-Cas Systems - genetics ; Design ; Diagnostic reagents ; Diagnostic systems ; DNA ; DNA sequencing ; Enzymes ; Gene sequencing ; Genetic research ; Genome-wide association studies ; Genomes ; Genomics ; Humans ; Immune system ; Multiprocessing ; Nucleotide sequence ; Nucleotide sequencing ; Pandemics ; Parallel processing ; Pathogens ; Proteins ; Python (Programming language) ; RNA ; SARS-CoV-2 - genetics ; Semiconductor industry ; Software ; Technology application ; Whole genome sequencing ; Whole Genome Sequencing - methods</subject><ispartof>PLoS computational biology, 2024-05, Vol.20 (5), p.e1012139</ispartof><rights>Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c555t-9d5c9df775c86ff8efe3e0b4a5d475c334933d747ed15dab1bb4ab83ec46f4f73</cites><orcidid>0000-0003-1656-7602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069179423?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069179423?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,38516,43895,44590,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38768250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bromberg, Yana</contributor><creatorcontrib>Foster, Zachary S L</creatorcontrib><creatorcontrib>Tupper, Andrew S</creatorcontrib><creatorcontrib>Press, Caroline M</creatorcontrib><creatorcontrib>Grünwald, Niklaus J</creatorcontrib><title>Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked by conserved regions where primers can be designed requires extensive bioinformatic analyses of genome sequences. We developed the Python package krisp to aid in the discovery of primers and diagnostic sequences that differentiate groups of samples from each other, using either unaligned genome sequences or a variant call format (VCF) file as input. Krisp has been optimized to handle large datasets by using efficient algorithms that run in near linear time, use minimal RAM, and leverage parallel processing when available. The validity of krisp results has been demonstrated in the laboratory with the successful design of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora ramorum from closely related Phytophthora species. Krisp is released open source under a permissive license with all the documentation needed to quickly design CRISPR-Cas diagnostic assays.</description><subject>Algorithms</subject><subject>Assaying</subject><subject>Computational Biology - methods</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - virology</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Design</subject><subject>Diagnostic reagents</subject><subject>Diagnostic systems</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Enzymes</subject><subject>Gene sequencing</subject><subject>Genetic research</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Immune system</subject><subject>Multiprocessing</subject><subject>Nucleotide sequence</subject><subject>Nucleotide sequencing</subject><subject>Pandemics</subject><subject>Parallel processing</subject><subject>Pathogens</subject><subject>Proteins</subject><subject>Python (Programming language)</subject><subject>RNA</subject><subject>SARS-CoV-2 - genetics</subject><subject>Semiconductor industry</subject><subject>Software</subject><subject>Technology application</subject><subject>Whole genome sequencing</subject><subject>Whole Genome Sequencing - methods</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2P0zAQhiMEYpeFf4DAEhc4tNh1nMTcqoqPihWsunC2JvY4dUnsEqeCXvnluDS7omgvyAePxs874xm9WfaU0SnjJXu9CbveQzvd6tpNGWUzxuW97JwJwSclF9X9v-Kz7FGMG0pTKIuH2RmvyqKaCXqe_frYu7h9Q-bkaj-sgydb0N-gQTIEAs4Q58mwRmIwusaTYMlitby-WhHwhkC3bZ11GgYX_KSGiIYYB40PcXCaQIywj8T2oSM_1qFF0qAPHZKI33fotfMNMTDA4-yBhTbik_G-yL6-e_tl8WFy-fn9cjG_nGghxDCRRmhpbFkKXRXWVmiRI61zECZPOc5zybkp8xINEwZqVqe3uuKo88LmtuQX2fNj3W0bohrXFxWnhWSlzGc8EcsjYQJs1LZ3HfR7FcCpP4nQNwr6NFqLqtYUCs4KI2qZowaglZEzbbWuuYSiSLVejt36kMaNg-pc1Ni24DHsDm1FWciZ4DShL_5B7_7cSDWQ-jtvw9CDPhRV81IWjNNkgkRN76DSMdg5HTxal_InglcngsQM-HNoYBejWl6v_oP9dMrmR1b3IcYe7e0-GVUHA98MqQ4GVqOBk-zZuItd3aG5Fd04lv8GyR_rjw</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Foster, Zachary S L</creator><creator>Tupper, Andrew S</creator><creator>Press, Caroline M</creator><creator>Grünwald, Niklaus J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1656-7602</orcidid></search><sort><creationdate>20240501</creationdate><title>Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data</title><author>Foster, Zachary S L ; Tupper, Andrew S ; Press, Caroline M ; Grünwald, Niklaus J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-9d5c9df775c86ff8efe3e0b4a5d475c334933d747ed15dab1bb4ab83ec46f4f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Assaying</topic><topic>Computational Biology - methods</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - virology</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Design</topic><topic>Diagnostic reagents</topic><topic>Diagnostic systems</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Enzymes</topic><topic>Gene sequencing</topic><topic>Genetic research</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Immune system</topic><topic>Multiprocessing</topic><topic>Nucleotide sequence</topic><topic>Nucleotide sequencing</topic><topic>Pandemics</topic><topic>Parallel processing</topic><topic>Pathogens</topic><topic>Proteins</topic><topic>Python (Programming language)</topic><topic>RNA</topic><topic>SARS-CoV-2 - genetics</topic><topic>Semiconductor industry</topic><topic>Software</topic><topic>Technology application</topic><topic>Whole genome sequencing</topic><topic>Whole Genome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster, Zachary S L</creatorcontrib><creatorcontrib>Tupper, Andrew S</creatorcontrib><creatorcontrib>Press, Caroline M</creatorcontrib><creatorcontrib>Grünwald, Niklaus J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster, Zachary S L</au><au>Tupper, Andrew S</au><au>Press, Caroline M</au><au>Grünwald, Niklaus J</au><au>Bromberg, Yana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>20</volume><issue>5</issue><spage>e1012139</spage><pages>e1012139-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked by conserved regions where primers can be designed requires extensive bioinformatic analyses of genome sequences. We developed the Python package krisp to aid in the discovery of primers and diagnostic sequences that differentiate groups of samples from each other, using either unaligned genome sequences or a variant call format (VCF) file as input. Krisp has been optimized to handle large datasets by using efficient algorithms that run in near linear time, use minimal RAM, and leverage parallel processing when available. The validity of krisp results has been demonstrated in the laboratory with the successful design of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora ramorum from closely related Phytophthora species. Krisp is released open source under a permissive license with all the documentation needed to quickly design CRISPR-Cas diagnostic assays.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38768250</pmid><doi>10.1371/journal.pcbi.1012139</doi><tpages>e1012139</tpages><orcidid>https://orcid.org/0000-0003-1656-7602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2024-05, Vol.20 (5), p.e1012139
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069179423
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Algorithms
Assaying
Computational Biology - methods
COVID-19
COVID-19 - diagnosis
COVID-19 - virology
CRISPR
CRISPR-Cas Systems - genetics
Design
Diagnostic reagents
Diagnostic systems
DNA
DNA sequencing
Enzymes
Gene sequencing
Genetic research
Genome-wide association studies
Genomes
Genomics
Humans
Immune system
Multiprocessing
Nucleotide sequence
Nucleotide sequencing
Pandemics
Parallel processing
Pathogens
Proteins
Python (Programming language)
RNA
SARS-CoV-2 - genetics
Semiconductor industry
Software
Technology application
Whole genome sequencing
Whole Genome Sequencing - methods
title Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Krisp:%20A%20Python%20package%20to%20aid%20in%20the%20design%20of%20CRISPR%20and%20amplification-based%20diagnostic%20assays%20from%20whole%20genome%20sequencing%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Foster,%20Zachary%20S%20L&rft.date=2024-05-01&rft.volume=20&rft.issue=5&rft.spage=e1012139&rft.pages=e1012139-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1012139&rft_dat=%3Cgale_plos_%3EA796130101%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c555t-9d5c9df775c86ff8efe3e0b4a5d475c334933d747ed15dab1bb4ab83ec46f4f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069179423&rft_id=info:pmid/38768250&rft_galeid=A796130101&rfr_iscdi=true