Loading…

Metamodelling of a two-population spiking neural network

In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The mode...

Full description

Saved in:
Bibliographic Details
Published in:PLoS computational biology 2023-11, Vol.19 (11), p.e1011625-e1011625
Main Authors: Skaar, Jan-Eirik W, Haug, Nicolai, Stasik, Alexander J, Einevoll, Gaute T, Tøndel, Kristin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c613t-a192fc630c297bf2788361671a19fdf6e88f47b7b75551c0f9cb15a138f2a1273
container_end_page e1011625
container_issue 11
container_start_page e1011625
container_title PLoS computational biology
container_volume 19
creator Skaar, Jan-Eirik W
Haug, Nicolai
Stasik, Alexander J
Einevoll, Gaute T
Tøndel, Kristin
description In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.
doi_str_mv 10.1371/journal.pcbi.1011625
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069179704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775219054</galeid><doaj_id>oai_doaj_org_article_c377ede0c0ea46f288fd1e29a28d2e56</doaj_id><sourcerecordid>A775219054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-a192fc630c297bf2788361671a19fdf6e88f47b7b75551c0f9cb15a138f2a1273</originalsourceid><addsrcrecordid>eNqVkl2L1DAUhosouK7-A8EBb_Rixpxk8tErWZZVB1YFP65DmiY1s52kJq3u_nvPOF1xZG8k0IS8T97T81FVT4GsgEl4tU1TjqZfDbYJKyAAgvJ71QlwzpaScXX_r_PD6lEpW0LwWIuTSr13o9ml1vV9iN0i-YVZjD_TckjD1JsxpLgoQ7jaa9FN2fS4oZ6vHlcPvOmLezLvp9XXNxdfzt8tLz--3ZyfXS6tADYuDdTUW8GIpbVsPJVKMQFCAgq-9cIp5deywcU5B0t8bRvgBpjy1ACV7LR6dvAd-lT0nGnRjIgaZC3JGonNgWiT2eohh53JNzqZoH9fpNxpk8dge6ctk9K1jljizFp4isFbcLQ2VLXUcYFer-doU7NzrXVxxJyPTI-VGL7pLv3QQIRSkjN0WBwcbA5lDFHHlA3KilP81hJqRF7MQXL6Prky6l0oFjtgoktT0RQ7owjDFiH6_B_07grMVGcwyRB9wn-ze1N9JiWnUBO-p1Z3ULhatws2RecD3h89eHn0AJnRXY-dmUrRm8-f_oP9cMyub0uUSsnO_6kvEL0f6Nsk9X6g9TzQ7BfeD-YM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069179704</pqid></control><display><type>article</type><title>Metamodelling of a two-population spiking neural network</title><source>NORA - Norwegian Open Research Archives</source><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Skaar, Jan-Eirik W ; Haug, Nicolai ; Stasik, Alexander J ; Einevoll, Gaute T ; Tøndel, Kristin</creator><contributor>Engel, Tatiana</contributor><creatorcontrib>Skaar, Jan-Eirik W ; Haug, Nicolai ; Stasik, Alexander J ; Einevoll, Gaute T ; Tøndel, Kristin ; Engel, Tatiana</creatorcontrib><description>In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1011625</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Approximation ; Behavior ; Biology and Life Sciences ; Computational neuroscience ; Computer and Information Sciences ; Conditional probability ; Connectivity ; Differential equations ; Discovery and exploration ; Distribution (Probability theory) ; Electrophysiological recording ; Firing pattern ; Funding ; Gaussian process ; Mathematical models ; Medicine and Health Sciences ; Metamodels ; Morphology ; Neural circuitry ; Neural networks ; Neurons ; Neurosciences ; Outer space ; Parameter identification ; Power spectra ; Probability distribution ; Random variables ; Research and Analysis Methods ; Simulation ; Social Sciences ; Spiking ; Statistical analysis ; Stochastic models</subject><ispartof>PLoS computational biology, 2023-11, Vol.19 (11), p.e1011625-e1011625</ispartof><rights>COPYRIGHT 2023 Public Library of Science</rights><rights>2023 Skaar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess</rights><rights>2023 Skaar et al 2023 Skaar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c613t-a192fc630c297bf2788361671a19fdf6e88f47b7b75551c0f9cb15a138f2a1273</cites><orcidid>0000-0003-1646-2472 ; 0000-0002-3610-5926 ; 0000-0002-9945-7208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069179704/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069179704?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,26567,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><contributor>Engel, Tatiana</contributor><creatorcontrib>Skaar, Jan-Eirik W</creatorcontrib><creatorcontrib>Haug, Nicolai</creatorcontrib><creatorcontrib>Stasik, Alexander J</creatorcontrib><creatorcontrib>Einevoll, Gaute T</creatorcontrib><creatorcontrib>Tøndel, Kristin</creatorcontrib><title>Metamodelling of a two-population spiking neural network</title><title>PLoS computational biology</title><description>In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Behavior</subject><subject>Biology and Life Sciences</subject><subject>Computational neuroscience</subject><subject>Computer and Information Sciences</subject><subject>Conditional probability</subject><subject>Connectivity</subject><subject>Differential equations</subject><subject>Discovery and exploration</subject><subject>Distribution (Probability theory)</subject><subject>Electrophysiological recording</subject><subject>Firing pattern</subject><subject>Funding</subject><subject>Gaussian process</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Metamodels</subject><subject>Morphology</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Outer space</subject><subject>Parameter identification</subject><subject>Power spectra</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Research and Analysis Methods</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Spiking</subject><subject>Statistical analysis</subject><subject>Stochastic models</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>3HK</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1DAUhosouK7-A8EBb_Rixpxk8tErWZZVB1YFP65DmiY1s52kJq3u_nvPOF1xZG8k0IS8T97T81FVT4GsgEl4tU1TjqZfDbYJKyAAgvJ71QlwzpaScXX_r_PD6lEpW0LwWIuTSr13o9ml1vV9iN0i-YVZjD_TckjD1JsxpLgoQ7jaa9FN2fS4oZ6vHlcPvOmLezLvp9XXNxdfzt8tLz--3ZyfXS6tADYuDdTUW8GIpbVsPJVKMQFCAgq-9cIp5deywcU5B0t8bRvgBpjy1ACV7LR6dvAd-lT0nGnRjIgaZC3JGonNgWiT2eohh53JNzqZoH9fpNxpk8dge6ctk9K1jljizFp4isFbcLQ2VLXUcYFer-doU7NzrXVxxJyPTI-VGL7pLv3QQIRSkjN0WBwcbA5lDFHHlA3KilP81hJqRF7MQXL6Prky6l0oFjtgoktT0RQ7owjDFiH6_B_07grMVGcwyRB9wn-ze1N9JiWnUBO-p1Z3ULhatws2RecD3h89eHn0AJnRXY-dmUrRm8-f_oP9cMyub0uUSsnO_6kvEL0f6Nsk9X6g9TzQ7BfeD-YM</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Skaar, Jan-Eirik W</creator><creator>Haug, Nicolai</creator><creator>Stasik, Alexander J</creator><creator>Einevoll, Gaute T</creator><creator>Tøndel, Kristin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1646-2472</orcidid><orcidid>https://orcid.org/0000-0002-3610-5926</orcidid><orcidid>https://orcid.org/0000-0002-9945-7208</orcidid></search><sort><creationdate>20231130</creationdate><title>Metamodelling of a two-population spiking neural network</title><author>Skaar, Jan-Eirik W ; Haug, Nicolai ; Stasik, Alexander J ; Einevoll, Gaute T ; Tøndel, Kristin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-a192fc630c297bf2788361671a19fdf6e88f47b7b75551c0f9cb15a138f2a1273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Behavior</topic><topic>Biology and Life Sciences</topic><topic>Computational neuroscience</topic><topic>Computer and Information Sciences</topic><topic>Conditional probability</topic><topic>Connectivity</topic><topic>Differential equations</topic><topic>Discovery and exploration</topic><topic>Distribution (Probability theory)</topic><topic>Electrophysiological recording</topic><topic>Firing pattern</topic><topic>Funding</topic><topic>Gaussian process</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Metamodels</topic><topic>Morphology</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Outer space</topic><topic>Parameter identification</topic><topic>Power spectra</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Research and Analysis Methods</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Spiking</topic><topic>Statistical analysis</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaar, Jan-Eirik W</creatorcontrib><creatorcontrib>Haug, Nicolai</creatorcontrib><creatorcontrib>Stasik, Alexander J</creatorcontrib><creatorcontrib>Einevoll, Gaute T</creatorcontrib><creatorcontrib>Tøndel, Kristin</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaar, Jan-Eirik W</au><au>Haug, Nicolai</au><au>Stasik, Alexander J</au><au>Einevoll, Gaute T</au><au>Tøndel, Kristin</au><au>Engel, Tatiana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodelling of a two-population spiking neural network</atitle><jtitle>PLoS computational biology</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>19</volume><issue>11</issue><spage>e1011625</spage><epage>e1011625</epage><pages>e1011625-e1011625</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In computational neuroscience, hypotheses are often formulated as bottom-up mechanistic models of the systems in question, consisting of differential equations that can be numerically integrated forward in time. Candidate models can then be validated by comparison against experimental data. The model outputs of neural network models depend on both neuron parameters, connectivity parameters and other model inputs. Successful model fitting requires sufficient exploration of the model parameter space, which can be computationally demanding. Additionally, identifying degeneracy in the parameters, i.e. different combinations of parameter values that produce similar outputs, is of interest, as they define the subset of parameter values consistent with the data. In this computational study, we apply metamodels to a two-population recurrent spiking network of point-neurons, the so-called Brunel network. Metamodels are data-driven approximations to more complex models with more desirable computational properties, which can be run considerably faster than the original model. Specifically, we apply and compare two different metamodelling techniques, masked autoregressive flows (MAF) and deep Gaussian process regression (DGPR), to estimate the power spectra of two different signals; the population spiking activities and the local field potential. We find that the metamodels are able to accurately model the power spectra in the asynchronous irregular regime, and that the DGPR metamodel provides a more accurate representation of the simulator compared to the MAF metamodel. Using the metamodels, we estimate the posterior probability distributions over parameters given observed simulator outputs separately for both LFP and population spiking activities. We find that these distributions correctly identify parameter combinations that give similar model outputs, and that some parameters are significantly more constrained by observing the LFP than by observing the population spiking activities.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pcbi.1011625</doi><tpages>e1011625</tpages><orcidid>https://orcid.org/0000-0003-1646-2472</orcidid><orcidid>https://orcid.org/0000-0002-3610-5926</orcidid><orcidid>https://orcid.org/0000-0002-9945-7208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2023-11, Vol.19 (11), p.e1011625-e1011625
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_3069179704
source NORA - Norwegian Open Research Archives; Publicly Available Content Database; PubMed Central
subjects Analysis
Approximation
Behavior
Biology and Life Sciences
Computational neuroscience
Computer and Information Sciences
Conditional probability
Connectivity
Differential equations
Discovery and exploration
Distribution (Probability theory)
Electrophysiological recording
Firing pattern
Funding
Gaussian process
Mathematical models
Medicine and Health Sciences
Metamodels
Morphology
Neural circuitry
Neural networks
Neurons
Neurosciences
Outer space
Parameter identification
Power spectra
Probability distribution
Random variables
Research and Analysis Methods
Simulation
Social Sciences
Spiking
Statistical analysis
Stochastic models
title Metamodelling of a two-population spiking neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodelling%20of%20a%20two-population%20spiking%20neural%20network&rft.jtitle=PLoS%20computational%20biology&rft.au=Skaar,%20Jan-Eirik%20W&rft.date=2023-11-30&rft.volume=19&rft.issue=11&rft.spage=e1011625&rft.epage=e1011625&rft.pages=e1011625-e1011625&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1011625&rft_dat=%3Cgale_plos_%3EA775219054%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c613t-a192fc630c297bf2788361671a19fdf6e88f47b7b75551c0f9cb15a138f2a1273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069179704&rft_id=info:pmid/&rft_galeid=A775219054&rfr_iscdi=true