Loading…
Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy
Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not...
Saved in:
Published in: | PLoS neglected tropical diseases 2024-04, Vol.18 (4), p.e0012117 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13 |
container_end_page | |
container_issue | 4 |
container_start_page | e0012117 |
container_title | PLoS neglected tropical diseases |
container_volume | 18 |
creator | Lin, Lin Dacal, Elena Díez, Nuria Carmona, Claudia Martin Ramirez, Alexandra Barón Argos, Lourdes Bermejo-Peláez, David Caballero, Carla Cuadrado, Daniel Darias-Plasencia, Oscar García-Villena, Jaime Bakardjiev, Alexander Postigo, Maria Recalde-Jaramillo, Ethan Flores-Chavez, Maria Santos, Andrés Ledesma-Carbayo, María Jesús Rubio, José M Luengo-Oroz, Miguel |
description | Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce. |
doi_str_mv | 10.1371/journal.pntd.0012117 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069186338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792633153</galeid><doaj_id>oai_doaj_org_article_66c8dd11d42e4239b025ceb7d44c2ea1</doaj_id><sourcerecordid>A792633153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEpl3M4OvHJFmhUVVgpEpsurcc53rw4NhTJ6nUv8fppFWnqrzw65xzH-cWxWegS-AlfN_FMQXtl_swtEtKgQGUb4pTqLlcsJLLt8_OJ8WHvt9RKmtZwfvihFcrTivOT4t_V-0WyToNzjrjtCebMKD3bovBIDlfby6IjYkk1H4xuA6JHofY6cEZcjvq8EDLtxhItMQ6r5PTveuJC6SLjfNIOmdS7E3c338s3lnte_w072fFzc-rm8vfi-s_vzaX6-uFkYIPCymRi4Y2oEGuGmsFA2aZqHhNaUOhrmpqrOVYcQuGW1ZzKKFmyDRvKgP8rPh6kN372Ku5Tb3idFVDrptXGbE5INqod2qfXKfTvYraqYeHmLZK544Yj2q1MlXbArSCoWC8biiTBpuyFcIw1FO0H3O0semwNRiGpP2R6PFPcH_VNt4pACrLupRZ4XxWSPF2xH5QnetNNkEHjOOUuADGcwNEhn57AX29vBm11bkCF2zMgc0kqtZlzTIGJM-o5SuovFrMlsWA2U08JogDYfKzT2ifigSqppF8TEZNI6nmkcy0L88b9ER6nEH-H3CX3aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069186338</pqid></control><display><type>article</type><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel</creator><contributor>Gaunt, Michael W.</contributor><creatorcontrib>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel ; Gaunt, Michael W.</creatorcontrib><description>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0012117</identifier><identifier>PMID: 38630833</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Automation ; Biology and Life Sciences ; Care and treatment ; Cellular telephones ; Computer and Information Sciences ; Deep learning ; Diagnosis ; Elephantiasis, Filarial - diagnosis ; Elephantiasis, Filarial - parasitology ; Engineering and Technology ; Filariasis ; Filariasis - diagnosis ; Filariasis - parasitology ; Grants ; Humans ; Initiatives ; Labels ; Laboratory equipment ; Malaria ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Microfilariae - isolation & purification ; Microscope and microscopy ; Microscopy ; Microscopy - methods ; Nematodes ; Object recognition ; Optical microscopes ; Parasites ; Physical Sciences ; Public health ; Real time ; Research and Analysis Methods ; Smartphone ; Smartphones ; Technicians ; Technology application ; Telemedicine ; Tropical diseases ; Vector-borne diseases ; Workflow</subject><ispartof>PLoS neglected tropical diseases, 2024-04, Vol.18 (4), p.e0012117</ispartof><rights>Copyright: © 2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Lin et al 2024 Lin et al</rights><rights>2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</cites><orcidid>0000-0003-3397-6002 ; 0000-0002-1903-6711 ; 0000-0002-8694-2001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069186338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069186338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38630833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gaunt, Michael W.</contributor><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Dacal, Elena</creatorcontrib><creatorcontrib>Díez, Nuria</creatorcontrib><creatorcontrib>Carmona, Claudia</creatorcontrib><creatorcontrib>Martin Ramirez, Alexandra</creatorcontrib><creatorcontrib>Barón Argos, Lourdes</creatorcontrib><creatorcontrib>Bermejo-Peláez, David</creatorcontrib><creatorcontrib>Caballero, Carla</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>Darias-Plasencia, Oscar</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Bakardjiev, Alexander</creatorcontrib><creatorcontrib>Postigo, Maria</creatorcontrib><creatorcontrib>Recalde-Jaramillo, Ethan</creatorcontrib><creatorcontrib>Flores-Chavez, Maria</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Rubio, José M</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Cellular telephones</subject><subject>Computer and Information Sciences</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Elephantiasis, Filarial - diagnosis</subject><subject>Elephantiasis, Filarial - parasitology</subject><subject>Engineering and Technology</subject><subject>Filariasis</subject><subject>Filariasis - diagnosis</subject><subject>Filariasis - parasitology</subject><subject>Grants</subject><subject>Humans</subject><subject>Initiatives</subject><subject>Labels</subject><subject>Laboratory equipment</subject><subject>Malaria</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Microfilariae - isolation & purification</subject><subject>Microscope and microscopy</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Nematodes</subject><subject>Object recognition</subject><subject>Optical microscopes</subject><subject>Parasites</subject><subject>Physical Sciences</subject><subject>Public health</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Technicians</subject><subject>Technology application</subject><subject>Telemedicine</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Workflow</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEpl3M4OvHJFmhUVVgpEpsurcc53rw4NhTJ6nUv8fppFWnqrzw65xzH-cWxWegS-AlfN_FMQXtl_swtEtKgQGUb4pTqLlcsJLLt8_OJ8WHvt9RKmtZwfvihFcrTivOT4t_V-0WyToNzjrjtCebMKD3bovBIDlfby6IjYkk1H4xuA6JHofY6cEZcjvq8EDLtxhItMQ6r5PTveuJC6SLjfNIOmdS7E3c338s3lnte_w072fFzc-rm8vfi-s_vzaX6-uFkYIPCymRi4Y2oEGuGmsFA2aZqHhNaUOhrmpqrOVYcQuGW1ZzKKFmyDRvKgP8rPh6kN372Ku5Tb3idFVDrptXGbE5INqod2qfXKfTvYraqYeHmLZK544Yj2q1MlXbArSCoWC8biiTBpuyFcIw1FO0H3O0semwNRiGpP2R6PFPcH_VNt4pACrLupRZ4XxWSPF2xH5QnetNNkEHjOOUuADGcwNEhn57AX29vBm11bkCF2zMgc0kqtZlzTIGJM-o5SuovFrMlsWA2U08JogDYfKzT2ifigSqppF8TEZNI6nmkcy0L88b9ER6nEH-H3CX3aw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lin, Lin</creator><creator>Dacal, Elena</creator><creator>Díez, Nuria</creator><creator>Carmona, Claudia</creator><creator>Martin Ramirez, Alexandra</creator><creator>Barón Argos, Lourdes</creator><creator>Bermejo-Peláez, David</creator><creator>Caballero, Carla</creator><creator>Cuadrado, Daniel</creator><creator>Darias-Plasencia, Oscar</creator><creator>García-Villena, Jaime</creator><creator>Bakardjiev, Alexander</creator><creator>Postigo, Maria</creator><creator>Recalde-Jaramillo, Ethan</creator><creator>Flores-Chavez, Maria</creator><creator>Santos, Andrés</creator><creator>Ledesma-Carbayo, María Jesús</creator><creator>Rubio, José M</creator><creator>Luengo-Oroz, Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3397-6002</orcidid><orcidid>https://orcid.org/0000-0002-1903-6711</orcidid><orcidid>https://orcid.org/0000-0002-8694-2001</orcidid></search><sort><creationdate>20240401</creationdate><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><author>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Cellular telephones</topic><topic>Computer and Information Sciences</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Elephantiasis, Filarial - diagnosis</topic><topic>Elephantiasis, Filarial - parasitology</topic><topic>Engineering and Technology</topic><topic>Filariasis</topic><topic>Filariasis - diagnosis</topic><topic>Filariasis - parasitology</topic><topic>Grants</topic><topic>Humans</topic><topic>Initiatives</topic><topic>Labels</topic><topic>Laboratory equipment</topic><topic>Malaria</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Microfilariae - isolation & purification</topic><topic>Microscope and microscopy</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Nematodes</topic><topic>Object recognition</topic><topic>Optical microscopes</topic><topic>Parasites</topic><topic>Physical Sciences</topic><topic>Public health</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Technicians</topic><topic>Technology application</topic><topic>Telemedicine</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Dacal, Elena</creatorcontrib><creatorcontrib>Díez, Nuria</creatorcontrib><creatorcontrib>Carmona, Claudia</creatorcontrib><creatorcontrib>Martin Ramirez, Alexandra</creatorcontrib><creatorcontrib>Barón Argos, Lourdes</creatorcontrib><creatorcontrib>Bermejo-Peláez, David</creatorcontrib><creatorcontrib>Caballero, Carla</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>Darias-Plasencia, Oscar</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Bakardjiev, Alexander</creatorcontrib><creatorcontrib>Postigo, Maria</creatorcontrib><creatorcontrib>Recalde-Jaramillo, Ethan</creatorcontrib><creatorcontrib>Flores-Chavez, Maria</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Rubio, José M</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lin</au><au>Dacal, Elena</au><au>Díez, Nuria</au><au>Carmona, Claudia</au><au>Martin Ramirez, Alexandra</au><au>Barón Argos, Lourdes</au><au>Bermejo-Peláez, David</au><au>Caballero, Carla</au><au>Cuadrado, Daniel</au><au>Darias-Plasencia, Oscar</au><au>García-Villena, Jaime</au><au>Bakardjiev, Alexander</au><au>Postigo, Maria</au><au>Recalde-Jaramillo, Ethan</au><au>Flores-Chavez, Maria</au><au>Santos, Andrés</au><au>Ledesma-Carbayo, María Jesús</au><au>Rubio, José M</au><au>Luengo-Oroz, Miguel</au><au>Gaunt, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>e0012117</spage><pages>e0012117-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38630833</pmid><doi>10.1371/journal.pntd.0012117</doi><orcidid>https://orcid.org/0000-0003-3397-6002</orcidid><orcidid>https://orcid.org/0000-0002-1903-6711</orcidid><orcidid>https://orcid.org/0000-0002-8694-2001</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2024-04, Vol.18 (4), p.e0012117 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_3069186338 |
source | PubMed Central Free; Publicly Available Content (ProQuest) |
subjects | Algorithms Animals Artificial Intelligence Automation Biology and Life Sciences Care and treatment Cellular telephones Computer and Information Sciences Deep learning Diagnosis Elephantiasis, Filarial - diagnosis Elephantiasis, Filarial - parasitology Engineering and Technology Filariasis Filariasis - diagnosis Filariasis - parasitology Grants Humans Initiatives Labels Laboratory equipment Malaria Medical research Medicine and Health Sciences Medicine, Experimental Microfilariae - isolation & purification Microscope and microscopy Microscopy Microscopy - methods Nematodes Object recognition Optical microscopes Parasites Physical Sciences Public health Real time Research and Analysis Methods Smartphone Smartphones Technicians Technology application Telemedicine Tropical diseases Vector-borne diseases Workflow |
title | Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Artificial%20Intelligence%20(AI)%20for%20real-time%20automatic%20quantification%20of%20filariasis%20in%20mobile%20microscopy&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Lin,%20Lin&rft.date=2024-04-01&rft.volume=18&rft.issue=4&rft.spage=e0012117&rft.pages=e0012117-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0012117&rft_dat=%3Cgale_plos_%3EA792633153%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069186338&rft_id=info:pmid/38630833&rft_galeid=A792633153&rfr_iscdi=true |