Loading…

Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not...

Full description

Saved in:
Bibliographic Details
Published in:PLoS neglected tropical diseases 2024-04, Vol.18 (4), p.e0012117
Main Authors: Lin, Lin, Dacal, Elena, Díez, Nuria, Carmona, Claudia, Martin Ramirez, Alexandra, Barón Argos, Lourdes, Bermejo-Peláez, David, Caballero, Carla, Cuadrado, Daniel, Darias-Plasencia, Oscar, García-Villena, Jaime, Bakardjiev, Alexander, Postigo, Maria, Recalde-Jaramillo, Ethan, Flores-Chavez, Maria, Santos, Andrés, Ledesma-Carbayo, María Jesús, Rubio, José M, Luengo-Oroz, Miguel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13
container_end_page
container_issue 4
container_start_page e0012117
container_title PLoS neglected tropical diseases
container_volume 18
creator Lin, Lin
Dacal, Elena
Díez, Nuria
Carmona, Claudia
Martin Ramirez, Alexandra
Barón Argos, Lourdes
Bermejo-Peláez, David
Caballero, Carla
Cuadrado, Daniel
Darias-Plasencia, Oscar
García-Villena, Jaime
Bakardjiev, Alexander
Postigo, Maria
Recalde-Jaramillo, Ethan
Flores-Chavez, Maria
Santos, Andrés
Ledesma-Carbayo, María Jesús
Rubio, José M
Luengo-Oroz, Miguel
description Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.
doi_str_mv 10.1371/journal.pntd.0012117
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069186338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792633153</galeid><doaj_id>oai_doaj_org_article_66c8dd11d42e4239b025ceb7d44c2ea1</doaj_id><sourcerecordid>A792633153</sourcerecordid><originalsourceid>FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsIfILDEpl3M4OvHJFmhUVVgpEpsurcc53rw4NhTJ6nUv8fppFWnqrzw65xzH-cWxWegS-AlfN_FMQXtl_swtEtKgQGUb4pTqLlcsJLLt8_OJ8WHvt9RKmtZwfvihFcrTivOT4t_V-0WyToNzjrjtCebMKD3bovBIDlfby6IjYkk1H4xuA6JHofY6cEZcjvq8EDLtxhItMQ6r5PTveuJC6SLjfNIOmdS7E3c338s3lnte_w072fFzc-rm8vfi-s_vzaX6-uFkYIPCymRi4Y2oEGuGmsFA2aZqHhNaUOhrmpqrOVYcQuGW1ZzKKFmyDRvKgP8rPh6kN372Ku5Tb3idFVDrptXGbE5INqod2qfXKfTvYraqYeHmLZK544Yj2q1MlXbArSCoWC8biiTBpuyFcIw1FO0H3O0semwNRiGpP2R6PFPcH_VNt4pACrLupRZ4XxWSPF2xH5QnetNNkEHjOOUuADGcwNEhn57AX29vBm11bkCF2zMgc0kqtZlzTIGJM-o5SuovFrMlsWA2U08JogDYfKzT2ifigSqppF8TEZNI6nmkcy0L88b9ER6nEH-H3CX3aw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069186338</pqid></control><display><type>article</type><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><source>PubMed Central Free</source><source>Publicly Available Content (ProQuest)</source><creator>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel</creator><contributor>Gaunt, Michael W.</contributor><creatorcontrib>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel ; Gaunt, Michael W.</creatorcontrib><description>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0012117</identifier><identifier>PMID: 38630833</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Automation ; Biology and Life Sciences ; Care and treatment ; Cellular telephones ; Computer and Information Sciences ; Deep learning ; Diagnosis ; Elephantiasis, Filarial - diagnosis ; Elephantiasis, Filarial - parasitology ; Engineering and Technology ; Filariasis ; Filariasis - diagnosis ; Filariasis - parasitology ; Grants ; Humans ; Initiatives ; Labels ; Laboratory equipment ; Malaria ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Microfilariae - isolation &amp; purification ; Microscope and microscopy ; Microscopy ; Microscopy - methods ; Nematodes ; Object recognition ; Optical microscopes ; Parasites ; Physical Sciences ; Public health ; Real time ; Research and Analysis Methods ; Smartphone ; Smartphones ; Technicians ; Technology application ; Telemedicine ; Tropical diseases ; Vector-borne diseases ; Workflow</subject><ispartof>PLoS neglected tropical diseases, 2024-04, Vol.18 (4), p.e0012117</ispartof><rights>Copyright: © 2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Lin et al 2024 Lin et al</rights><rights>2024 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</cites><orcidid>0000-0003-3397-6002 ; 0000-0002-1903-6711 ; 0000-0002-8694-2001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069186338/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069186338?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38630833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gaunt, Michael W.</contributor><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Dacal, Elena</creatorcontrib><creatorcontrib>Díez, Nuria</creatorcontrib><creatorcontrib>Carmona, Claudia</creatorcontrib><creatorcontrib>Martin Ramirez, Alexandra</creatorcontrib><creatorcontrib>Barón Argos, Lourdes</creatorcontrib><creatorcontrib>Bermejo-Peláez, David</creatorcontrib><creatorcontrib>Caballero, Carla</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>Darias-Plasencia, Oscar</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Bakardjiev, Alexander</creatorcontrib><creatorcontrib>Postigo, Maria</creatorcontrib><creatorcontrib>Recalde-Jaramillo, Ethan</creatorcontrib><creatorcontrib>Flores-Chavez, Maria</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Rubio, José M</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Cellular telephones</subject><subject>Computer and Information Sciences</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Elephantiasis, Filarial - diagnosis</subject><subject>Elephantiasis, Filarial - parasitology</subject><subject>Engineering and Technology</subject><subject>Filariasis</subject><subject>Filariasis - diagnosis</subject><subject>Filariasis - parasitology</subject><subject>Grants</subject><subject>Humans</subject><subject>Initiatives</subject><subject>Labels</subject><subject>Laboratory equipment</subject><subject>Malaria</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Microfilariae - isolation &amp; purification</subject><subject>Microscope and microscopy</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Nematodes</subject><subject>Object recognition</subject><subject>Optical microscopes</subject><subject>Parasites</subject><subject>Physical Sciences</subject><subject>Public health</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>Smartphone</subject><subject>Smartphones</subject><subject>Technicians</subject><subject>Technology application</subject><subject>Telemedicine</subject><subject>Tropical diseases</subject><subject>Vector-borne diseases</subject><subject>Workflow</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsIfILDEpl3M4OvHJFmhUVVgpEpsurcc53rw4NhTJ6nUv8fppFWnqrzw65xzH-cWxWegS-AlfN_FMQXtl_swtEtKgQGUb4pTqLlcsJLLt8_OJ8WHvt9RKmtZwfvihFcrTivOT4t_V-0WyToNzjrjtCebMKD3bovBIDlfby6IjYkk1H4xuA6JHofY6cEZcjvq8EDLtxhItMQ6r5PTveuJC6SLjfNIOmdS7E3c338s3lnte_w072fFzc-rm8vfi-s_vzaX6-uFkYIPCymRi4Y2oEGuGmsFA2aZqHhNaUOhrmpqrOVYcQuGW1ZzKKFmyDRvKgP8rPh6kN372Ku5Tb3idFVDrptXGbE5INqod2qfXKfTvYraqYeHmLZK544Yj2q1MlXbArSCoWC8biiTBpuyFcIw1FO0H3O0semwNRiGpP2R6PFPcH_VNt4pACrLupRZ4XxWSPF2xH5QnetNNkEHjOOUuADGcwNEhn57AX29vBm11bkCF2zMgc0kqtZlzTIGJM-o5SuovFrMlsWA2U08JogDYfKzT2ifigSqppF8TEZNI6nmkcy0L88b9ER6nEH-H3CX3aw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Lin, Lin</creator><creator>Dacal, Elena</creator><creator>Díez, Nuria</creator><creator>Carmona, Claudia</creator><creator>Martin Ramirez, Alexandra</creator><creator>Barón Argos, Lourdes</creator><creator>Bermejo-Peláez, David</creator><creator>Caballero, Carla</creator><creator>Cuadrado, Daniel</creator><creator>Darias-Plasencia, Oscar</creator><creator>García-Villena, Jaime</creator><creator>Bakardjiev, Alexander</creator><creator>Postigo, Maria</creator><creator>Recalde-Jaramillo, Ethan</creator><creator>Flores-Chavez, Maria</creator><creator>Santos, Andrés</creator><creator>Ledesma-Carbayo, María Jesús</creator><creator>Rubio, José M</creator><creator>Luengo-Oroz, Miguel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SS</scope><scope>7T2</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3397-6002</orcidid><orcidid>https://orcid.org/0000-0002-1903-6711</orcidid><orcidid>https://orcid.org/0000-0002-8694-2001</orcidid></search><sort><creationdate>20240401</creationdate><title>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</title><author>Lin, Lin ; Dacal, Elena ; Díez, Nuria ; Carmona, Claudia ; Martin Ramirez, Alexandra ; Barón Argos, Lourdes ; Bermejo-Peláez, David ; Caballero, Carla ; Cuadrado, Daniel ; Darias-Plasencia, Oscar ; García-Villena, Jaime ; Bakardjiev, Alexander ; Postigo, Maria ; Recalde-Jaramillo, Ethan ; Flores-Chavez, Maria ; Santos, Andrés ; Ledesma-Carbayo, María Jesús ; Rubio, José M ; Luengo-Oroz, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Cellular telephones</topic><topic>Computer and Information Sciences</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Elephantiasis, Filarial - diagnosis</topic><topic>Elephantiasis, Filarial - parasitology</topic><topic>Engineering and Technology</topic><topic>Filariasis</topic><topic>Filariasis - diagnosis</topic><topic>Filariasis - parasitology</topic><topic>Grants</topic><topic>Humans</topic><topic>Initiatives</topic><topic>Labels</topic><topic>Laboratory equipment</topic><topic>Malaria</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Microfilariae - isolation &amp; purification</topic><topic>Microscope and microscopy</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Nematodes</topic><topic>Object recognition</topic><topic>Optical microscopes</topic><topic>Parasites</topic><topic>Physical Sciences</topic><topic>Public health</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>Smartphone</topic><topic>Smartphones</topic><topic>Technicians</topic><topic>Technology application</topic><topic>Telemedicine</topic><topic>Tropical diseases</topic><topic>Vector-borne diseases</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Lin</creatorcontrib><creatorcontrib>Dacal, Elena</creatorcontrib><creatorcontrib>Díez, Nuria</creatorcontrib><creatorcontrib>Carmona, Claudia</creatorcontrib><creatorcontrib>Martin Ramirez, Alexandra</creatorcontrib><creatorcontrib>Barón Argos, Lourdes</creatorcontrib><creatorcontrib>Bermejo-Peláez, David</creatorcontrib><creatorcontrib>Caballero, Carla</creatorcontrib><creatorcontrib>Cuadrado, Daniel</creatorcontrib><creatorcontrib>Darias-Plasencia, Oscar</creatorcontrib><creatorcontrib>García-Villena, Jaime</creatorcontrib><creatorcontrib>Bakardjiev, Alexander</creatorcontrib><creatorcontrib>Postigo, Maria</creatorcontrib><creatorcontrib>Recalde-Jaramillo, Ethan</creatorcontrib><creatorcontrib>Flores-Chavez, Maria</creatorcontrib><creatorcontrib>Santos, Andrés</creatorcontrib><creatorcontrib>Ledesma-Carbayo, María Jesús</creatorcontrib><creatorcontrib>Rubio, José M</creatorcontrib><creatorcontrib>Luengo-Oroz, Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Lin</au><au>Dacal, Elena</au><au>Díez, Nuria</au><au>Carmona, Claudia</au><au>Martin Ramirez, Alexandra</au><au>Barón Argos, Lourdes</au><au>Bermejo-Peláez, David</au><au>Caballero, Carla</au><au>Cuadrado, Daniel</au><au>Darias-Plasencia, Oscar</au><au>García-Villena, Jaime</au><au>Bakardjiev, Alexander</au><au>Postigo, Maria</au><au>Recalde-Jaramillo, Ethan</au><au>Flores-Chavez, Maria</au><au>Santos, Andrés</au><au>Ledesma-Carbayo, María Jesús</au><au>Rubio, José M</au><au>Luengo-Oroz, Miguel</au><au>Gaunt, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>18</volume><issue>4</issue><spage>e0012117</spage><pages>e0012117-</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38630833</pmid><doi>10.1371/journal.pntd.0012117</doi><orcidid>https://orcid.org/0000-0003-3397-6002</orcidid><orcidid>https://orcid.org/0000-0002-1903-6711</orcidid><orcidid>https://orcid.org/0000-0002-8694-2001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2024-04, Vol.18 (4), p.e0012117
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_3069186338
source PubMed Central Free; Publicly Available Content (ProQuest)
subjects Algorithms
Animals
Artificial Intelligence
Automation
Biology and Life Sciences
Care and treatment
Cellular telephones
Computer and Information Sciences
Deep learning
Diagnosis
Elephantiasis, Filarial - diagnosis
Elephantiasis, Filarial - parasitology
Engineering and Technology
Filariasis
Filariasis - diagnosis
Filariasis - parasitology
Grants
Humans
Initiatives
Labels
Laboratory equipment
Malaria
Medical research
Medicine and Health Sciences
Medicine, Experimental
Microfilariae - isolation & purification
Microscope and microscopy
Microscopy
Microscopy - methods
Nematodes
Object recognition
Optical microscopes
Parasites
Physical Sciences
Public health
Real time
Research and Analysis Methods
Smartphone
Smartphones
Technicians
Technology application
Telemedicine
Tropical diseases
Vector-borne diseases
Workflow
title Edge Artificial Intelligence (AI) for real-time automatic quantification of filariasis in mobile microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T14%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Artificial%20Intelligence%20(AI)%20for%20real-time%20automatic%20quantification%20of%20filariasis%20in%20mobile%20microscopy&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Lin,%20Lin&rft.date=2024-04-01&rft.volume=18&rft.issue=4&rft.spage=e0012117&rft.pages=e0012117-&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0012117&rft_dat=%3Cgale_plos_%3EA792633153%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c543t-55e34b0b1a156bff4212f2483900b019890cff3e83f1c3f29317192e2a3b8c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069186338&rft_id=info:pmid/38630833&rft_galeid=A792633153&rfr_iscdi=true