Loading…

Sugarcane mill mud-induced putative host (soybean (Glycine max))-rhizobia symbiosis in sandy loam soil

Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern st...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-11, Vol.18 (11), p.e0293317-e0293317
Main Authors: Uchimiya, Minori, DeRito, Christopher M, Hay, Anthony G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Domestic production of controlled-release, compost-based, and microbe-enhanced fertilizers is being expanded in the U.S. as a part of rural development. Sugarcane mill mud is a sterilized (≈90°C) agricultural byproduct in surplus that has received interests as a soil amendment in several Southern states, because of its high phosphorus and organic carbon contents. Addition of mill mud to sandy loam significantly increased the nodule formation compared to fertilized and unfertilized controls. Mill mud addition also resulted in pod yields similar to the fertilized control. Though not found in mill mud itself, mill mud additions correlated with an increase in soil Rhizobia as determined by deep 16S rRNA gene sequencing. We hypothesize that Firmicutes in sterilized mill mud induced Rhizobia that in turn enhanced soybean (Glycine max) growth. Collectively, mill mud enhanced the plant growth promoting bacteria when applied to a silt loam, although the relative influence of mill mud-derived bacteria, organic carbon, and nutrients is yet to be determined.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0293317