Loading…
Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models
The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the count...
Saved in:
Published in: | PloS one 2024-01, Vol.19 (1), p.e0296064 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c642t-5899003bff8df0cebc77419265e81a09fa09052556a31a107f3fce24b1c5f513 |
container_end_page | |
container_issue | 1 |
container_start_page | e0296064 |
container_title | PloS one |
container_volume | 19 |
creator | Cañedo, Mayara Carolina Lopes, Thiago Inácio Barros Rossato, Luana Nunes, Isadora Batista Faccin, Izadora Dillis Salomé, Túlio Máximo Simionatto, Simone |
description | The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025.
To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario.
Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data.
Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions. |
doi_str_mv | 10.1371/journal.pone.0296064 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069265289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781032792</galeid><doaj_id>oai_doaj_org_article_31dcb584647f49fcbd1397f89f934efb</doaj_id><sourcerecordid>A781032792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-5899003bff8df0cebc77419265e81a09fa09052556a31a107f3fce24b1c5f513</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEomXhDRBYQkIgdRc7zsncoKUculJpJajKpeU4dtZLEi-2s7Q8KY_DpN1WG9QLFEVxnO__JzPjiaKnBM8Izcmble1dJ5rZ2nZqhmOW4Sy5F-0TRuNpFmN6f2e9Fz3yfoVxSossexjt0SJmKWj2oz-Ldi1kQFajw9PzxYcpYWgtukq1RiLTobBU6L0Tv01jRIdaEdQQFLXWBdGYcImcCMa-RXMkLTgNbxuFBDCX3vjB9kT1DhQnKvyy7odH8z5Yp2qnvDe2O0BHtgnT76YDZ4_UxZBOFwwofGttWJquPgC_aqSDEAsQ1BBOVeiL3QCF5hvlRK3g3yrV-MfRAy0ar55sn5Po7NPHs8Oj6fHp58Xh_HgqsyQO07RgDGNaal1UGktVyjxPCIuzVBVEYKbhxmmcppmgRBCca6qlipOSyFSnhE6i59e268Z6vu2J5xRng0dcMCAW10RlxYqvnWmFu-RWGH61YV3NhQtGNopTUskyLZIsyXXCtCwrQlmuC6YZTZQuwevdNlpftqqSUCmo7ch0_KUzS17bDSe4oBgnGTi82jo4-7NXPvDWeKmaRnTK9p7HLCaEJCymgL74B707vS1VC8jAdNpCYDmY8nleEEzjHMwm0ewOCq6rgwYt1wb2R4LXIwEwQV2EWvTe88W3r__Pnp6P2Zc77FKJJiy9bXo4xJ0fg8k1KJ313il9W2WC-TCAN9Xgw4nl2wEE2bPdDt2KbiaO_gWgDS9Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069265289</pqid></control><display><type>article</type><title>Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed</source><source>Coronavirus Research Database</source><creator>Cañedo, Mayara Carolina ; Lopes, Thiago Inácio Barros ; Rossato, Luana ; Nunes, Isadora Batista ; Faccin, Izadora Dillis ; Salomé, Túlio Máximo ; Simionatto, Simone</creator><contributor>Alouffi, Abdulaziz</contributor><creatorcontrib>Cañedo, Mayara Carolina ; Lopes, Thiago Inácio Barros ; Rossato, Luana ; Nunes, Isadora Batista ; Faccin, Izadora Dillis ; Salomé, Túlio Máximo ; Simionatto, Simone ; Alouffi, Abdulaziz</creatorcontrib><description>The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025.
To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario.
Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data.
Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0296064</identifier><identifier>PMID: 38295029</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Autoregressive models ; Births ; Brazil ; Brazil - epidemiology ; Comparative analysis ; Control ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; Engineering and Technology ; Epidemics ; Fatalities ; Female ; Forecasting ; Forecasts and trends ; Health aspects ; Humans ; Infant, Newborn ; Maternal Mortality ; Medicine and Health Sciences ; Mortality ; Mothers ; Neonates ; Neural networks ; Neural Networks, Computer ; Pandemics ; Patient outcomes ; People and places ; Physical Sciences ; Postpartum period ; Pregnancy ; Pregnant women ; Public health ; Research and Analysis Methods ; Respiratory diseases ; Respiratory tract infection ; Retrospective Studies ; Severe acute respiratory syndrome ; Trinidad and Tobago ; Viral diseases ; Winter ; Womens health ; World health</subject><ispartof>PloS one, 2024-01, Vol.19 (1), p.e0296064</ispartof><rights>Copyright: © 2024 Cañedo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Cañedo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Cañedo et al 2024 Cañedo et al</rights><rights>2024 Cañedo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-5899003bff8df0cebc77419265e81a09fa09052556a31a107f3fce24b1c5f513</cites><orcidid>0000-0003-2367-0915 ; 0000-0002-4049-8662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069265289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069265289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38295029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Alouffi, Abdulaziz</contributor><creatorcontrib>Cañedo, Mayara Carolina</creatorcontrib><creatorcontrib>Lopes, Thiago Inácio Barros</creatorcontrib><creatorcontrib>Rossato, Luana</creatorcontrib><creatorcontrib>Nunes, Isadora Batista</creatorcontrib><creatorcontrib>Faccin, Izadora Dillis</creatorcontrib><creatorcontrib>Salomé, Túlio Máximo</creatorcontrib><creatorcontrib>Simionatto, Simone</creatorcontrib><title>Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025.
To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario.
Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data.
Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions.</description><subject>Autoregressive models</subject><subject>Births</subject><subject>Brazil</subject><subject>Brazil - epidemiology</subject><subject>Comparative analysis</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>Engineering and Technology</subject><subject>Epidemics</subject><subject>Fatalities</subject><subject>Female</subject><subject>Forecasting</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Maternal Mortality</subject><subject>Medicine and Health Sciences</subject><subject>Mortality</subject><subject>Mothers</subject><subject>Neonates</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pandemics</subject><subject>Patient outcomes</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Postpartum period</subject><subject>Pregnancy</subject><subject>Pregnant women</subject><subject>Public health</subject><subject>Research and Analysis Methods</subject><subject>Respiratory diseases</subject><subject>Respiratory tract infection</subject><subject>Retrospective Studies</subject><subject>Severe acute respiratory syndrome</subject><subject>Trinidad and Tobago</subject><subject>Viral diseases</subject><subject>Winter</subject><subject>Womens health</subject><subject>World health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEomXhDRBYQkIgdRc7zsncoKUculJpJajKpeU4dtZLEi-2s7Q8KY_DpN1WG9QLFEVxnO__JzPjiaKnBM8Izcmble1dJ5rZ2nZqhmOW4Sy5F-0TRuNpFmN6f2e9Fz3yfoVxSossexjt0SJmKWj2oz-Ldi1kQFajw9PzxYcpYWgtukq1RiLTobBU6L0Tv01jRIdaEdQQFLXWBdGYcImcCMa-RXMkLTgNbxuFBDCX3vjB9kT1DhQnKvyy7odH8z5Yp2qnvDe2O0BHtgnT76YDZ4_UxZBOFwwofGttWJquPgC_aqSDEAsQ1BBOVeiL3QCF5hvlRK3g3yrV-MfRAy0ar55sn5Po7NPHs8Oj6fHp58Xh_HgqsyQO07RgDGNaal1UGktVyjxPCIuzVBVEYKbhxmmcppmgRBCca6qlipOSyFSnhE6i59e268Z6vu2J5xRng0dcMCAW10RlxYqvnWmFu-RWGH61YV3NhQtGNopTUskyLZIsyXXCtCwrQlmuC6YZTZQuwevdNlpftqqSUCmo7ch0_KUzS17bDSe4oBgnGTi82jo4-7NXPvDWeKmaRnTK9p7HLCaEJCymgL74B707vS1VC8jAdNpCYDmY8nleEEzjHMwm0ewOCq6rgwYt1wb2R4LXIwEwQV2EWvTe88W3r__Pnp6P2Zc77FKJJiy9bXo4xJ0fg8k1KJ313il9W2WC-TCAN9Xgw4nl2wEE2bPdDt2KbiaO_gWgDS9Q</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Cañedo, Mayara Carolina</creator><creator>Lopes, Thiago Inácio Barros</creator><creator>Rossato, Luana</creator><creator>Nunes, Isadora Batista</creator><creator>Faccin, Izadora Dillis</creator><creator>Salomé, Túlio Máximo</creator><creator>Simionatto, Simone</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2367-0915</orcidid><orcidid>https://orcid.org/0000-0002-4049-8662</orcidid></search><sort><creationdate>20240131</creationdate><title>Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models</title><author>Cañedo, Mayara Carolina ; Lopes, Thiago Inácio Barros ; Rossato, Luana ; Nunes, Isadora Batista ; Faccin, Izadora Dillis ; Salomé, Túlio Máximo ; Simionatto, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-5899003bff8df0cebc77419265e81a09fa09052556a31a107f3fce24b1c5f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Autoregressive models</topic><topic>Births</topic><topic>Brazil</topic><topic>Brazil - epidemiology</topic><topic>Comparative analysis</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>Engineering and Technology</topic><topic>Epidemics</topic><topic>Fatalities</topic><topic>Female</topic><topic>Forecasting</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Maternal Mortality</topic><topic>Medicine and Health Sciences</topic><topic>Mortality</topic><topic>Mothers</topic><topic>Neonates</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pandemics</topic><topic>Patient outcomes</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Postpartum period</topic><topic>Pregnancy</topic><topic>Pregnant women</topic><topic>Public health</topic><topic>Research and Analysis Methods</topic><topic>Respiratory diseases</topic><topic>Respiratory tract infection</topic><topic>Retrospective Studies</topic><topic>Severe acute respiratory syndrome</topic><topic>Trinidad and Tobago</topic><topic>Viral diseases</topic><topic>Winter</topic><topic>Womens health</topic><topic>World health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cañedo, Mayara Carolina</creatorcontrib><creatorcontrib>Lopes, Thiago Inácio Barros</creatorcontrib><creatorcontrib>Rossato, Luana</creatorcontrib><creatorcontrib>Nunes, Isadora Batista</creatorcontrib><creatorcontrib>Faccin, Izadora Dillis</creatorcontrib><creatorcontrib>Salomé, Túlio Máximo</creatorcontrib><creatorcontrib>Simionatto, Simone</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cañedo, Mayara Carolina</au><au>Lopes, Thiago Inácio Barros</au><au>Rossato, Luana</au><au>Nunes, Isadora Batista</au><au>Faccin, Izadora Dillis</au><au>Salomé, Túlio Máximo</au><au>Simionatto, Simone</au><au>Alouffi, Abdulaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-01-31</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>e0296064</spage><pages>e0296064-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The acute respiratory infection caused by severe acute respiratory syndrome coronavirus disease (COVID-19) has resulted in increased mortality among pregnant, puerperal, and neonates. Brazil has the highest number of maternal deaths and a distressing fatality rate of 7.2%, more than double the country's current mortality rate of 2.8%. This study investigates the impact of the COVID-19 pandemic on the Brazilian Maternal Mortality Ratio (BMMR) and forecasts the BMMR up to 2025.
To assess the impact of the COVID-19 pandemic on the BMMR, we employed Holt-Winters, Autoregressive Integrated Moving Average (ARIMA), and Neural Networks Autoregression (NNA). We utilized a retrospective time series spanning twenty-five years (1996-2021) to forecast the BMMR under both a COVID-19 pandemic scenario and a controlled COVID-19 scenario.
Brazil consistently exhibited high maternal mortality values (mean BMMR [1996-2019] = 57.99 ±6.34/100,000 live births) according to World Health Organization criteria. The country experienced its highest mortality peak in the historical BMMR series in the second quarter of 2021 (197.75/100,000 live births), representing a more than 200% increase compared to the previous period. Holt-Winter and ARIMA models demonstrated better agreement with prediction results beyond the sample data, although NNA provided a better fit to previous data.
Our study revealed an increase in BMMR and its temporal correlation with COVID-19 incidence. Additionally, it showed that Holt-Winter and ARIMA models can be employed for BMMR forecasting with lower errors. This information can assist governments and public health agencies in making timely and informed decisions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38295029</pmid><doi>10.1371/journal.pone.0296064</doi><tpages>e0296064</tpages><orcidid>https://orcid.org/0000-0003-2367-0915</orcidid><orcidid>https://orcid.org/0000-0002-4049-8662</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-01, Vol.19 (1), p.e0296064 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3069265289 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed; Coronavirus Research Database |
subjects | Autoregressive models Births Brazil Brazil - epidemiology Comparative analysis Control Coronaviruses COVID-19 COVID-19 - epidemiology Engineering and Technology Epidemics Fatalities Female Forecasting Forecasts and trends Health aspects Humans Infant, Newborn Maternal Mortality Medicine and Health Sciences Mortality Mothers Neonates Neural networks Neural Networks, Computer Pandemics Patient outcomes People and places Physical Sciences Postpartum period Pregnancy Pregnant women Public health Research and Analysis Methods Respiratory diseases Respiratory tract infection Retrospective Studies Severe acute respiratory syndrome Trinidad and Tobago Viral diseases Winter Womens health World health |
title | Impact of COVID-19 pandemic in the Brazilian maternal mortality ratio: A comparative analysis of Neural Networks Autoregression, Holt-Winters exponential smoothing, and Autoregressive Integrated Moving Average models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20COVID-19%20pandemic%20in%20the%20Brazilian%20maternal%20mortality%20ratio:%20A%20comparative%20analysis%20of%20Neural%20Networks%20Autoregression,%20Holt-Winters%20exponential%20smoothing,%20and%20Autoregressive%20Integrated%20Moving%20Average%20models&rft.jtitle=PloS%20one&rft.au=Ca%C3%B1edo,%20Mayara%20Carolina&rft.date=2024-01-31&rft.volume=19&rft.issue=1&rft.spage=e0296064&rft.pages=e0296064-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0296064&rft_dat=%3Cgale_plos_%3EA781032792%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-5899003bff8df0cebc77419265e81a09fa09052556a31a107f3fce24b1c5f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069265289&rft_id=info:pmid/38295029&rft_galeid=A781032792&rfr_iscdi=true |