Loading…
Unsupervised model for structure segmentation applied to brain computed tomography
This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for...
Saved in:
Published in: | PloS one 2024-06, Vol.19 (6), p.e0304017 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents an unsupervised method for segmenting brain computed tomography scans. The proposed methodology involves image feature extraction and application of similarity and continuity constraints to generate segmentation maps of the anatomical head structures. Specifically designed for real-world datasets, this approach applies a spatial continuity scoring function tailored to the desired number of structures. The primary objective is to assist medical experts in diagnosis by identifying regions with specific abnormalities. Results indicate a simplified and accessible solution, reducing computational effort, training time, and financial costs. Moreover, the method presents potential for expediting the interpretation of abnormal scans, thereby impacting clinical practice. This proposed approach might serve as a practical tool for segmenting brain computed tomography scans, and make a significant contribution to the analysis of medical images in both research and clinical settings. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0304017 |