Loading…

Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp

High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT geneb...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-05, Vol.19 (5), p.e0302158-e0302158
Main Authors: Conejo-Rodríguez, Diego Felipe, Gonzalez-Guzman, Juan José, Ramirez-Gil, Joaquín Guillermo, Wenzl, Peter, Urban, Milan Oldřich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c642t-491c5c01de94f5abc589b9ae12d14fa7a57042c6e854bea9881d992baa029b753
container_end_page e0302158
container_issue 5
container_start_page e0302158
container_title PloS one
container_volume 19
creator Conejo-Rodríguez, Diego Felipe
Gonzalez-Guzman, Juan José
Ramirez-Gil, Joaquín Guillermo
Wenzl, Peter
Urban, Milan Oldřich
description High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.
doi_str_mv 10.1371/journal.pone.0302158
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069285289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A792379605</galeid><doaj_id>oai_doaj_org_article_3326a4467e5645ea86828956c5ec429d</doaj_id><sourcerecordid>A792379605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-491c5c01de94f5abc589b9ae12d14fa7a57042c6e854bea9881d992baa029b753</originalsourceid><addsrcrecordid>eNqNk9tu1DAQhiMEoqXwBggsISGQ2MWH2Im5QatyWqlSEadba-I4WZfEDnZS0ZfgmfF2t1WDeoF8YWvmm3_s8UyWPSZ4SVhBXp_5KTjoloN3ZokZpoSXd7JDIhldCIrZ3Rvng-xBjGcYc1YKcT87SJsUOc4Psz_vbGtH6FBtog52GH2IKG4gDMYh3UGMVs-9r1DjA7L9EPy5dS1qjTMVuJ8ItDYJ9w714KA1vXHjG7RCGqJBcZzqC5R8qwB6Y1OOYVgicDX6vEl-302XpofZvQa6aB7t96Ps-4f3344_LU5OP66PVycLLXI6LnJJNNeY1EbmDYdK81JWEgyhNckbKIAXOKdamJLnlQFZlqSWklYAmMqq4Owoe7rTHTof1b6UUTEsJC05LWUi1jui9nCmhmB7CBfKg1WXBh9aBWG0ujOKMSogz0VhuMi5gVKUSYELzY3OqayT1tt9tqnqTa1TYQJ0M9G5x9mNav25IgQLTglOCi_2CsH_mkwcVW-jNl0Hzvhpe3GOJROYbS_-7B_09uftqRbSC6xrfEqst6JqVUjKCinwtkzLW6i0atNbnRqvsck-C3g5C0jMaH6PLUwxqvXXL__Pnv6Ys89vsBsD3biJqWnG1G5xDuY7UAcfYzDNdZUJVtu5uaqG2s6N2s9NCnty84eug64Ghf0FfHEUKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069285289</pqid></control><display><type>article</type><title>Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Conejo-Rodríguez, Diego Felipe ; Gonzalez-Guzman, Juan José ; Ramirez-Gil, Joaquín Guillermo ; Wenzl, Peter ; Urban, Milan Oldřich</creator><contributor>Tripathi, Kuldeep</contributor><creatorcontrib>Conejo-Rodríguez, Diego Felipe ; Gonzalez-Guzman, Juan José ; Ramirez-Gil, Joaquín Guillermo ; Wenzl, Peter ; Urban, Milan Oldřich ; Tripathi, Kuldeep</creatorcontrib><description>High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0302158</identifier><identifier>PMID: 38696404</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agrobiodiversity ; Algorithms ; Analysis ; Arachis ; Arachis - genetics ; Arachis - growth &amp; development ; Artificial Intelligence ; Beans ; Biology and Life Sciences ; Case studies ; Classification ; Colorimetry ; Cost analysis ; Data analysis ; Data mining ; Diversity indices ; Ecology and Environmental Sciences ; Evaluation ; Flowering ; Genetic resources ; Genetic variability ; Geometric morphometrics ; Germplasm ; Image processing ; Information management ; Leaves ; Legumes ; Machine Learning ; Morphology ; Peanuts ; Phaseolus ; Phaseolus - anatomy &amp; histology ; Phaseolus - genetics ; Phaseolus - growth &amp; development ; Phenotype ; Phenotypic variations ; Phenotyping ; Plant genetics ; Plant resources ; Research and Analysis Methods ; Seed Bank ; Seeds ; Workflow</subject><ispartof>PloS one, 2024-05, Vol.19 (5), p.e0302158-e0302158</ispartof><rights>Copyright: © 2024 Conejo-Rodríguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Conejo-Rodríguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Conejo-Rodríguez et al 2024 Conejo-Rodríguez et al</rights><rights>2024 Conejo-Rodríguez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c642t-491c5c01de94f5abc589b9ae12d14fa7a57042c6e854bea9881d992baa029b753</cites><orcidid>0000-0001-7129-4016 ; 0000-0002-7643-3430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069285289/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069285289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,25736,27907,27908,36995,36996,44573,53774,53776,74877</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38696404$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Tripathi, Kuldeep</contributor><creatorcontrib>Conejo-Rodríguez, Diego Felipe</creatorcontrib><creatorcontrib>Gonzalez-Guzman, Juan José</creatorcontrib><creatorcontrib>Ramirez-Gil, Joaquín Guillermo</creatorcontrib><creatorcontrib>Wenzl, Peter</creatorcontrib><creatorcontrib>Urban, Milan Oldřich</creatorcontrib><title>Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.</description><subject>Agrobiodiversity</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Arachis</subject><subject>Arachis - genetics</subject><subject>Arachis - growth &amp; development</subject><subject>Artificial Intelligence</subject><subject>Beans</subject><subject>Biology and Life Sciences</subject><subject>Case studies</subject><subject>Classification</subject><subject>Colorimetry</subject><subject>Cost analysis</subject><subject>Data analysis</subject><subject>Data mining</subject><subject>Diversity indices</subject><subject>Ecology and Environmental Sciences</subject><subject>Evaluation</subject><subject>Flowering</subject><subject>Genetic resources</subject><subject>Genetic variability</subject><subject>Geometric morphometrics</subject><subject>Germplasm</subject><subject>Image processing</subject><subject>Information management</subject><subject>Leaves</subject><subject>Legumes</subject><subject>Machine Learning</subject><subject>Morphology</subject><subject>Peanuts</subject><subject>Phaseolus</subject><subject>Phaseolus - anatomy &amp; histology</subject><subject>Phaseolus - genetics</subject><subject>Phaseolus - growth &amp; development</subject><subject>Phenotype</subject><subject>Phenotypic variations</subject><subject>Phenotyping</subject><subject>Plant genetics</subject><subject>Plant resources</subject><subject>Research and Analysis Methods</subject><subject>Seed Bank</subject><subject>Seeds</subject><subject>Workflow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tu1DAQhiMEoqXwBggsISGQ2MWH2Im5QatyWqlSEadba-I4WZfEDnZS0ZfgmfF2t1WDeoF8YWvmm3_s8UyWPSZ4SVhBXp_5KTjoloN3ZokZpoSXd7JDIhldCIrZ3Rvng-xBjGcYc1YKcT87SJsUOc4Psz_vbGtH6FBtog52GH2IKG4gDMYh3UGMVs-9r1DjA7L9EPy5dS1qjTMVuJ8ItDYJ9w714KA1vXHjG7RCGqJBcZzqC5R8qwB6Y1OOYVgicDX6vEl-302XpofZvQa6aB7t96Ps-4f3344_LU5OP66PVycLLXI6LnJJNNeY1EbmDYdK81JWEgyhNckbKIAXOKdamJLnlQFZlqSWklYAmMqq4Owoe7rTHTof1b6UUTEsJC05LWUi1jui9nCmhmB7CBfKg1WXBh9aBWG0ujOKMSogz0VhuMi5gVKUSYELzY3OqayT1tt9tqnqTa1TYQJ0M9G5x9mNav25IgQLTglOCi_2CsH_mkwcVW-jNl0Hzvhpe3GOJROYbS_-7B_09uftqRbSC6xrfEqst6JqVUjKCinwtkzLW6i0atNbnRqvsck-C3g5C0jMaH6PLUwxqvXXL__Pnv6Ys89vsBsD3biJqWnG1G5xDuY7UAcfYzDNdZUJVtu5uaqG2s6N2s9NCnty84eug64Ghf0FfHEUKQ</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Conejo-Rodríguez, Diego Felipe</creator><creator>Gonzalez-Guzman, Juan José</creator><creator>Ramirez-Gil, Joaquín Guillermo</creator><creator>Wenzl, Peter</creator><creator>Urban, Milan Oldřich</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7129-4016</orcidid><orcidid>https://orcid.org/0000-0002-7643-3430</orcidid></search><sort><creationdate>20240502</creationdate><title>Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp</title><author>Conejo-Rodríguez, Diego Felipe ; Gonzalez-Guzman, Juan José ; Ramirez-Gil, Joaquín Guillermo ; Wenzl, Peter ; Urban, Milan Oldřich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-491c5c01de94f5abc589b9ae12d14fa7a57042c6e854bea9881d992baa029b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agrobiodiversity</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Arachis</topic><topic>Arachis - genetics</topic><topic>Arachis - growth &amp; development</topic><topic>Artificial Intelligence</topic><topic>Beans</topic><topic>Biology and Life Sciences</topic><topic>Case studies</topic><topic>Classification</topic><topic>Colorimetry</topic><topic>Cost analysis</topic><topic>Data analysis</topic><topic>Data mining</topic><topic>Diversity indices</topic><topic>Ecology and Environmental Sciences</topic><topic>Evaluation</topic><topic>Flowering</topic><topic>Genetic resources</topic><topic>Genetic variability</topic><topic>Geometric morphometrics</topic><topic>Germplasm</topic><topic>Image processing</topic><topic>Information management</topic><topic>Leaves</topic><topic>Legumes</topic><topic>Machine Learning</topic><topic>Morphology</topic><topic>Peanuts</topic><topic>Phaseolus</topic><topic>Phaseolus - anatomy &amp; histology</topic><topic>Phaseolus - genetics</topic><topic>Phaseolus - growth &amp; development</topic><topic>Phenotype</topic><topic>Phenotypic variations</topic><topic>Phenotyping</topic><topic>Plant genetics</topic><topic>Plant resources</topic><topic>Research and Analysis Methods</topic><topic>Seed Bank</topic><topic>Seeds</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conejo-Rodríguez, Diego Felipe</creatorcontrib><creatorcontrib>Gonzalez-Guzman, Juan José</creatorcontrib><creatorcontrib>Ramirez-Gil, Joaquín Guillermo</creatorcontrib><creatorcontrib>Wenzl, Peter</creatorcontrib><creatorcontrib>Urban, Milan Oldřich</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (ProQuest Medical &amp; Health Databases)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conejo-Rodríguez, Diego Felipe</au><au>Gonzalez-Guzman, Juan José</au><au>Ramirez-Gil, Joaquín Guillermo</au><au>Wenzl, Peter</au><au>Urban, Milan Oldřich</au><au>Tripathi, Kuldeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-05-02</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>e0302158</spage><epage>e0302158</epage><pages>e0302158-e0302158</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>High-throughput phenotyping brings new opportunities for detailed genebank accessions characterization based on image-processing techniques and data analysis using machine learning algorithms. Our work proposes to improve the characterization processes of bean and peanut accessions in the CIAT genebank through the identification of phenomic descriptors comparable to classical descriptors including methodology integration into the genebank workflow. To cope with these goals morphometrics and colorimetry traits of 14 bean and 16 forage peanut accessions were determined and compared to the classical International Board for Plant Genetic Resources (IBPGR) descriptors. Descriptors discriminating most accessions were identified using a random forest algorithm. The most-valuable classification descriptors for peanuts were 100-seed weight and days to flowering, and for beans, days to flowering and primary seed color. The combination of phenomic and classical descriptors increased the accuracy of the classification of Phaseolus and Arachis accessions. Functional diversity indices are recommended to genebank curators to evaluate phenotypic variability to identify accessions with unique traits or identify accessions that represent the greatest phenotypic variation of the species (functional agrobiodiversity collections). The artificial intelligence algorithms are capable of characterizing accessions which reduces costs generated by additional phenotyping. Even though deep analysis of data requires new skills, associating genetic, morphological and ecogeographic diversity is giving us an opportunity to establish unique functional agrobiodiversity collections with new potential traits.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38696404</pmid><doi>10.1371/journal.pone.0302158</doi><tpages>e0302158</tpages><orcidid>https://orcid.org/0000-0001-7129-4016</orcidid><orcidid>https://orcid.org/0000-0002-7643-3430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-05, Vol.19 (5), p.e0302158-e0302158
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069285289
source Publicly Available Content (ProQuest); PubMed Central
subjects Agrobiodiversity
Algorithms
Analysis
Arachis
Arachis - genetics
Arachis - growth & development
Artificial Intelligence
Beans
Biology and Life Sciences
Case studies
Classification
Colorimetry
Cost analysis
Data analysis
Data mining
Diversity indices
Ecology and Environmental Sciences
Evaluation
Flowering
Genetic resources
Genetic variability
Geometric morphometrics
Germplasm
Image processing
Information management
Leaves
Legumes
Machine Learning
Morphology
Peanuts
Phaseolus
Phaseolus - anatomy & histology
Phaseolus - genetics
Phaseolus - growth & development
Phenotype
Phenotypic variations
Phenotyping
Plant genetics
Plant resources
Research and Analysis Methods
Seed Bank
Seeds
Workflow
title Digital descriptors sharpen classical descriptors, for improving genebank accession management: A case study on Arachis spp. and Phaseolus spp
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20descriptors%20sharpen%20classical%20descriptors,%20for%20improving%20genebank%20accession%20management:%20A%20case%20study%20on%20Arachis%20spp.%20and%20Phaseolus%20spp&rft.jtitle=PloS%20one&rft.au=Conejo-Rodr%C3%ADguez,%20Diego%20Felipe&rft.date=2024-05-02&rft.volume=19&rft.issue=5&rft.spage=e0302158&rft.epage=e0302158&rft.pages=e0302158-e0302158&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0302158&rft_dat=%3Cgale_plos_%3EA792379605%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c642t-491c5c01de94f5abc589b9ae12d14fa7a57042c6e854bea9881d992baa029b753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069285289&rft_id=info:pmid/38696404&rft_galeid=A792379605&rfr_iscdi=true