Loading…

A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings

Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and rel...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-05, Vol.19 (5), p.e0303139-e0303139
Main Authors: Alghazzawi, Dilshad, Noor, Aqsa, Alolaiyan, Hanan, Khalifa, Hamiden Abd El-Wahed, Alburaikan, Alhanouf, Xin, Qin, Razaq, Abdul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343
cites cdi_FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343
container_end_page e0303139
container_issue 5
container_start_page e0303139
container_title PloS one
container_volume 19
creator Alghazzawi, Dilshad
Noor, Aqsa
Alolaiyan, Hanan
Khalifa, Hamiden Abd El-Wahed
Alburaikan, Alhanouf
Xin, Qin
Razaq, Abdul
description Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and reliable decisionmaking techniques are essential for identifying the most effective approach to mitigate road traffic incidents. This research endeavors to investigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to provide a solution. This research presents two innovative aggregation operators: the Fermatean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of these operators are discussed and important exceptional scenarios are thoroughly delineated. Furthermore, by implementing the suggested operators, we develop a systematic approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fermatean fuzzy (FF) data. In order to show the viability of the developed method, we provide a numerical illustration encompassing the determination of the most effective approach to alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed approach in relation to a number of established methodologies.
doi_str_mv 10.1371/journal.pone.0303139
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069285571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A793373167</galeid><doaj_id>oai_doaj_org_article_594719437210413a8cd33e9def1c8b70</doaj_id><sourcerecordid>A793373167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbK1-A9GAIPqwazJ3Mpk8LsXqQqHgv9eQydzsTpmdjEmm2ILf3Yw7LV3pg-QhuZffPTccTpa9ZHTJQLAPl270ve6Wg-txSYECA_koO2YS8kWZU3h8732UPQvhklIOVVk-zY6gEnkFND_Ofq9I766wIwP6MKCJ7RUS15O4RRKwmxqpcpbonqC1M6CHwTtttiQ64rEZDZJUNyR6bW1riDambbCPgYx9g56cod_piEnDjjc310k5xrbfhOfZE6u7gC_m-yT7fvbx2-nnxfnFp_Xp6nxhShBxgVxW3EIuaW0KUYItDMpa1MbyQhRFwyuohballI1gtcyFZZpZbEqeUzRQwEn2eq87dC6o2bmggJYyrzgXLBHrPdE4fakG3-60v1ZOt-pvw_mN0j62pkPFZSGYLEDkjBYMdGUaAJQNWmaqWtCk9W7e5t3PEUNUuzYY7DrdoxuntRykoCXnCX3zD_rw52Zqo9P-trcuGW0mUbUSEkAAK0Wilg9Q6TS4a01KiW1T_2Dg_cFAYiL-ihs9hqDWX7_8P3vx45B9e4_dou7iNrhunKIUDsFiDxrvQvBo74xnVE0hv3VDTSFXc8jT2KvZtLHeYXM3dJtq-ANzjPZK</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069285571</pqid></control><display><type>article</type><title>A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Alghazzawi, Dilshad ; Noor, Aqsa ; Alolaiyan, Hanan ; Khalifa, Hamiden Abd El-Wahed ; Alburaikan, Alhanouf ; Xin, Qin ; Razaq, Abdul</creator><contributor>Jan, Naeem</contributor><creatorcontrib>Alghazzawi, Dilshad ; Noor, Aqsa ; Alolaiyan, Hanan ; Khalifa, Hamiden Abd El-Wahed ; Alburaikan, Alhanouf ; Xin, Qin ; Razaq, Abdul ; Jan, Naeem</creatorcontrib><description>Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and reliable decisionmaking techniques are essential for identifying the most effective approach to mitigate road traffic incidents. This research endeavors to investigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to provide a solution. This research presents two innovative aggregation operators: the Fermatean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of these operators are discussed and important exceptional scenarios are thoroughly delineated. Furthermore, by implementing the suggested operators, we develop a systematic approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fermatean fuzzy (FF) data. In order to show the viability of the developed method, we provide a numerical illustration encompassing the determination of the most effective approach to alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed approach in relation to a number of established methodologies.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0303139</identifier><identifier>PMID: 38728302</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accidents ; Accidents, Traffic - prevention &amp; control ; Ambiguity ; Capital budgeting ; COVID-19 ; COVID-19 diagnostic tests ; Decision making ; Developing countries ; Disease transmission ; Fuzzy algorithms ; Fuzzy Logic ; Fuzzy sets ; Fuzzy systems ; Humans ; LDCs ; Methods ; Operators ; Prevention ; Quality management ; Roads ; Traffic ; Traffic accidents ; Traffic accidents &amp; safety ; Traffic engineering</subject><ispartof>PloS one, 2024-05, Vol.19 (5), p.e0303139-e0303139</ispartof><rights>Copyright: © 2024 Alghazzawi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Alghazzawi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Alghazzawi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343</citedby><cites>FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343</cites><orcidid>0000-0002-1898-4082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069285571/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069285571?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,38497,43876,44571,74161,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38728302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jan, Naeem</contributor><creatorcontrib>Alghazzawi, Dilshad</creatorcontrib><creatorcontrib>Noor, Aqsa</creatorcontrib><creatorcontrib>Alolaiyan, Hanan</creatorcontrib><creatorcontrib>Khalifa, Hamiden Abd El-Wahed</creatorcontrib><creatorcontrib>Alburaikan, Alhanouf</creatorcontrib><creatorcontrib>Xin, Qin</creatorcontrib><creatorcontrib>Razaq, Abdul</creatorcontrib><title>A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and reliable decisionmaking techniques are essential for identifying the most effective approach to mitigate road traffic incidents. This research endeavors to investigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to provide a solution. This research presents two innovative aggregation operators: the Fermatean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of these operators are discussed and important exceptional scenarios are thoroughly delineated. Furthermore, by implementing the suggested operators, we develop a systematic approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fermatean fuzzy (FF) data. In order to show the viability of the developed method, we provide a numerical illustration encompassing the determination of the most effective approach to alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed approach in relation to a number of established methodologies.</description><subject>Accidents</subject><subject>Accidents, Traffic - prevention &amp; control</subject><subject>Ambiguity</subject><subject>Capital budgeting</subject><subject>COVID-19</subject><subject>COVID-19 diagnostic tests</subject><subject>Decision making</subject><subject>Developing countries</subject><subject>Disease transmission</subject><subject>Fuzzy algorithms</subject><subject>Fuzzy Logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Humans</subject><subject>LDCs</subject><subject>Methods</subject><subject>Operators</subject><subject>Prevention</subject><subject>Quality management</subject><subject>Roads</subject><subject>Traffic</subject><subject>Traffic accidents</subject><subject>Traffic accidents &amp; safety</subject><subject>Traffic engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9rFDEUxQdRbK1-A9GAIPqwazJ3Mpk8LsXqQqHgv9eQydzsTpmdjEmm2ILf3Yw7LV3pg-QhuZffPTccTpa9ZHTJQLAPl270ve6Wg-txSYECA_koO2YS8kWZU3h8732UPQvhklIOVVk-zY6gEnkFND_Ofq9I766wIwP6MKCJ7RUS15O4RRKwmxqpcpbonqC1M6CHwTtttiQ64rEZDZJUNyR6bW1riDambbCPgYx9g56cod_piEnDjjc310k5xrbfhOfZE6u7gC_m-yT7fvbx2-nnxfnFp_Xp6nxhShBxgVxW3EIuaW0KUYItDMpa1MbyQhRFwyuohballI1gtcyFZZpZbEqeUzRQwEn2eq87dC6o2bmggJYyrzgXLBHrPdE4fakG3-60v1ZOt-pvw_mN0j62pkPFZSGYLEDkjBYMdGUaAJQNWmaqWtCk9W7e5t3PEUNUuzYY7DrdoxuntRykoCXnCX3zD_rw52Zqo9P-trcuGW0mUbUSEkAAK0Wilg9Q6TS4a01KiW1T_2Dg_cFAYiL-ihs9hqDWX7_8P3vx45B9e4_dou7iNrhunKIUDsFiDxrvQvBo74xnVE0hv3VDTSFXc8jT2KvZtLHeYXM3dJtq-ANzjPZK</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Alghazzawi, Dilshad</creator><creator>Noor, Aqsa</creator><creator>Alolaiyan, Hanan</creator><creator>Khalifa, Hamiden Abd El-Wahed</creator><creator>Alburaikan, Alhanouf</creator><creator>Xin, Qin</creator><creator>Razaq, Abdul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1898-4082</orcidid></search><sort><creationdate>20240510</creationdate><title>A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings</title><author>Alghazzawi, Dilshad ; Noor, Aqsa ; Alolaiyan, Hanan ; Khalifa, Hamiden Abd El-Wahed ; Alburaikan, Alhanouf ; Xin, Qin ; Razaq, Abdul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accidents</topic><topic>Accidents, Traffic - prevention &amp; control</topic><topic>Ambiguity</topic><topic>Capital budgeting</topic><topic>COVID-19</topic><topic>COVID-19 diagnostic tests</topic><topic>Decision making</topic><topic>Developing countries</topic><topic>Disease transmission</topic><topic>Fuzzy algorithms</topic><topic>Fuzzy Logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Humans</topic><topic>LDCs</topic><topic>Methods</topic><topic>Operators</topic><topic>Prevention</topic><topic>Quality management</topic><topic>Roads</topic><topic>Traffic</topic><topic>Traffic accidents</topic><topic>Traffic accidents &amp; safety</topic><topic>Traffic engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alghazzawi, Dilshad</creatorcontrib><creatorcontrib>Noor, Aqsa</creatorcontrib><creatorcontrib>Alolaiyan, Hanan</creatorcontrib><creatorcontrib>Khalifa, Hamiden Abd El-Wahed</creatorcontrib><creatorcontrib>Alburaikan, Alhanouf</creatorcontrib><creatorcontrib>Xin, Qin</creatorcontrib><creatorcontrib>Razaq, Abdul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alghazzawi, Dilshad</au><au>Noor, Aqsa</au><au>Alolaiyan, Hanan</au><au>Khalifa, Hamiden Abd El-Wahed</au><au>Alburaikan, Alhanouf</au><au>Xin, Qin</au><au>Razaq, Abdul</au><au>Jan, Naeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-05-10</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>e0303139</spage><epage>e0303139</epage><pages>e0303139-e0303139</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Road traffic accidents (RTAs) pose a significant hazard to the security of the general public, especially in developing nations. A daily average of more than three thousand fatalities is recorded worldwide, rating it as the second most prevalent cause of death among people aged 5-29. Precise and reliable decisionmaking techniques are essential for identifying the most effective approach to mitigate road traffic incidents. This research endeavors to investigate this specific concern. The Fermatean fuzzy set (FFS) is a strong and efficient method for addressing ambiguity, particularly when the concept of Pythagorean fuzzy set fails to provide a solution. This research presents two innovative aggregation operators: the Fermatean fuzzy ordered weighted averaging (FFOWA) operator and the Fermatean fuzzy dynamic ordered weighted geometric (FFOWG) operator. The salient characteristics of these operators are discussed and important exceptional scenarios are thoroughly delineated. Furthermore, by implementing the suggested operators, we develop a systematic approach to handle multiple attribute decisionmaking (MADM) scenarios that involve Fermatean fuzzy (FF) data. In order to show the viability of the developed method, we provide a numerical illustration encompassing the determination of the most effective approach to alleviate road traffic accidents. Lastly, we conduct a comparative evaluation of the proposed approach in relation to a number of established methodologies.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38728302</pmid><doi>10.1371/journal.pone.0303139</doi><tpages>e0303139</tpages><orcidid>https://orcid.org/0000-0002-1898-4082</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-05, Vol.19 (5), p.e0303139-e0303139
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069285571
source Publicly Available Content Database; PubMed Central; Coronavirus Research Database
subjects Accidents
Accidents, Traffic - prevention & control
Ambiguity
Capital budgeting
COVID-19
COVID-19 diagnostic tests
Decision making
Developing countries
Disease transmission
Fuzzy algorithms
Fuzzy Logic
Fuzzy sets
Fuzzy systems
Humans
LDCs
Methods
Operators
Prevention
Quality management
Roads
Traffic
Traffic accidents
Traffic accidents & safety
Traffic engineering
title A novel perspective on the selection of an effective approach to reduce road traffic accidents under Fermatean fuzzy settings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20perspective%20on%20the%20selection%20of%20an%20effective%20approach%20to%20reduce%20road%20traffic%20accidents%20under%20Fermatean%20fuzzy%20settings&rft.jtitle=PloS%20one&rft.au=Alghazzawi,%20Dilshad&rft.date=2024-05-10&rft.volume=19&rft.issue=5&rft.spage=e0303139&rft.epage=e0303139&rft.pages=e0303139-e0303139&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0303139&rft_dat=%3Cgale_plos_%3EA793373167%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c637t-e5985f3290bc4763f4ce9b7bcf54744d583b7af699d71b927f1a1fed6520ec343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069285571&rft_id=info:pmid/38728302&rft_galeid=A793373167&rfr_iscdi=true