Loading…

Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites

Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-05, Vol.19 (5), p.e0301849-e0301849
Main Authors: Crayen, Max Arwed, Kagan, Igor, Esghaei, Moein, Hoehl, Dirk, Thomas, Uwe, Prückl, Robert, Schaffelhofer, Stefan, Treue, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c572t-99fb688b9aec8374d28a95e320d8a9c02f49849af63e056f275448de30997d673
container_end_page e0301849
container_issue 5
container_start_page e0301849
container_title PloS one
container_volume 19
creator Crayen, Max Arwed
Kagan, Igor
Esghaei, Moein
Hoehl, Dirk
Thomas, Uwe
Prückl, Robert
Schaffelhofer, Stefan
Treue, Stefan
description Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation technique for precise, 3-dimensional electrode positioning in awake monkeys. The investigation of neural functions in awake primates often requires stable access to the brain with thin and delicate recording electrodes. This is usually realized by implanting a chronic recording chamber onto the skull of the animal that allows direct access to the dura. Most recording and positioning techniques utilize this implanted recording chamber as a holder of the microdrive or to hold a grid. This in turn reduces the degrees of freedom in positioning. To solve this problem, we require innovative, flexible, but precise tools for neuronal recordings. We instead mount the electrode microdrive above the animal on an arch, equipped with a series of translational and rotational micromanipulators, allowing movements in all axes. Here, the positioning is controlled by infrared cameras tracking the location of the microdrive and the monkey, allowing precise and flexible trajectories. To verify the accuracy of this technique, we created iron deposits in the tissue that could be detected by MRI. Our results demonstrate a remarkable precision with the confirmed physical location of these deposits averaging less than 0.5 mm from their planned position. Pilot electrophysiological recordings additionally demonstrate the accuracy and flexibility of this method. Our innovative approach could significantly enhance the accuracy and flexibility of neural recordings, potentially catalyzing further advancements in neuroscientific research.
doi_str_mv 10.1371/journal.pone.0301849
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3069289731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795584781</galeid><doaj_id>oai_doaj_org_article_9d5c371997d74d0f952c8f8408270a25</doaj_id><sourcerecordid>A795584781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-99fb688b9aec8374d28a95e320d8a9c02f49849af63e056f275448de30997d673</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlomuRKlvVrYGFBXW9DJj3tZGib2SQd9N-b7nSXqeyF5CIhec6bnDfnZNlLjJaYcvxh6wbf63a5cz0sEUVYFPJRdoolJYuSIPr4aH2SPQthixCjoiyfZidUCMQYJqeZuQ62b3KjO_B60Qy2giqHFkz0roK8sybN3u4h7_XeNjpa1-e18_nOg7EBcvopj9o3EEcZV-edNvpmgHztte3zYCOE59mTWrcBXkzzWXb95fPPi2-Ly6uvq4vzy4VhnMSFlPW6FGItNRhBeVERoSUDSlCVFgaRupApR12XFBAra8JZUYgKKJKSVyWnZ9nrg-6udUFN_gRFUSmJkJziRKwOROX0Vu287bT_o5y26nbD-UZpH61pQcmKmWTzKJ2egmrJiBG1KJAgHGnCktbH6bZh3UFloI9etzPR-UlvN6pxe4UxpqTgZVJ4Nyl4lywLUXU2GGhb3YMbbh-OucCcyYS--Qd9OL2JanTKwPa1SxebUVSdc8mYKJJcopYPUGlUkL47VVNt0_4s4P0sIDERfsdGDyGo1Y_v_89e_Zqzb4_YDeg2boJrh7HGwhwsDmAqxhA81PcuY6TGZrhzQ43NoKZmSGGvjn_oPuiu-ulfNuMDXw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3069289731</pqid></control><display><type>article</type><title>Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Crayen, Max Arwed ; Kagan, Igor ; Esghaei, Moein ; Hoehl, Dirk ; Thomas, Uwe ; Prückl, Robert ; Schaffelhofer, Stefan ; Treue, Stefan</creator><contributor>Rajagopalan, Uma Maheswari</contributor><creatorcontrib>Crayen, Max Arwed ; Kagan, Igor ; Esghaei, Moein ; Hoehl, Dirk ; Thomas, Uwe ; Prückl, Robert ; Schaffelhofer, Stefan ; Treue, Stefan ; Rajagopalan, Uma Maheswari</creatorcontrib><description>Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation technique for precise, 3-dimensional electrode positioning in awake monkeys. The investigation of neural functions in awake primates often requires stable access to the brain with thin and delicate recording electrodes. This is usually realized by implanting a chronic recording chamber onto the skull of the animal that allows direct access to the dura. Most recording and positioning techniques utilize this implanted recording chamber as a holder of the microdrive or to hold a grid. This in turn reduces the degrees of freedom in positioning. To solve this problem, we require innovative, flexible, but precise tools for neuronal recordings. We instead mount the electrode microdrive above the animal on an arch, equipped with a series of translational and rotational micromanipulators, allowing movements in all axes. Here, the positioning is controlled by infrared cameras tracking the location of the microdrive and the monkey, allowing precise and flexible trajectories. To verify the accuracy of this technique, we created iron deposits in the tissue that could be detected by MRI. Our results demonstrate a remarkable precision with the confirmed physical location of these deposits averaging less than 0.5 mm from their planned position. Pilot electrophysiological recordings additionally demonstrate the accuracy and flexibility of this method. Our innovative approach could significantly enhance the accuracy and flexibility of neural recordings, potentially catalyzing further advancements in neuroscientific research.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0301849</identifier><identifier>PMID: 38805512</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Aluminum ; Animal behavior ; Animals ; Biology and Life Sciences ; Brain ; Brain - physiology ; Cameras ; Chambers ; Electrodes ; Electrodes, Implanted ; Engineering and Technology ; Flexibility ; Geometry ; Imaging, Three-Dimensional - instrumentation ; Imaging, Three-Dimensional - methods ; Infrared cameras ; Infrared tracking ; Localization ; Macaca ; Macaca mulatta ; Male ; Medicine and Health Sciences ; Micromanipulation ; Monkeys ; Navigation behavior ; Neuronavigation - instrumentation ; Neuronavigation - methods ; Neurons ; Planning ; Primates ; Recording ; Recording sessions ; Research and Analysis Methods ; Wakefulness - physiology</subject><ispartof>PloS one, 2024-05, Vol.19 (5), p.e0301849-e0301849</ispartof><rights>Copyright: © 2024 Crayen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Crayen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Crayen et al 2024 Crayen et al</rights><rights>2024 Crayen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-99fb688b9aec8374d28a95e320d8a9c02f49849af63e056f275448de30997d673</cites><orcidid>0009-0003-1643-9640 ; 0000-0002-1814-4200 ; 0000-0002-1621-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3069289731/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3069289731?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38805512$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rajagopalan, Uma Maheswari</contributor><creatorcontrib>Crayen, Max Arwed</creatorcontrib><creatorcontrib>Kagan, Igor</creatorcontrib><creatorcontrib>Esghaei, Moein</creatorcontrib><creatorcontrib>Hoehl, Dirk</creatorcontrib><creatorcontrib>Thomas, Uwe</creatorcontrib><creatorcontrib>Prückl, Robert</creatorcontrib><creatorcontrib>Schaffelhofer, Stefan</creatorcontrib><creatorcontrib>Treue, Stefan</creatorcontrib><title>Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation technique for precise, 3-dimensional electrode positioning in awake monkeys. The investigation of neural functions in awake primates often requires stable access to the brain with thin and delicate recording electrodes. This is usually realized by implanting a chronic recording chamber onto the skull of the animal that allows direct access to the dura. Most recording and positioning techniques utilize this implanted recording chamber as a holder of the microdrive or to hold a grid. This in turn reduces the degrees of freedom in positioning. To solve this problem, we require innovative, flexible, but precise tools for neuronal recordings. We instead mount the electrode microdrive above the animal on an arch, equipped with a series of translational and rotational micromanipulators, allowing movements in all axes. Here, the positioning is controlled by infrared cameras tracking the location of the microdrive and the monkey, allowing precise and flexible trajectories. To verify the accuracy of this technique, we created iron deposits in the tissue that could be detected by MRI. Our results demonstrate a remarkable precision with the confirmed physical location of these deposits averaging less than 0.5 mm from their planned position. Pilot electrophysiological recordings additionally demonstrate the accuracy and flexibility of this method. Our innovative approach could significantly enhance the accuracy and flexibility of neural recordings, potentially catalyzing further advancements in neuroscientific research.</description><subject>Accuracy</subject><subject>Aluminum</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Cameras</subject><subject>Chambers</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Engineering and Technology</subject><subject>Flexibility</subject><subject>Geometry</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Infrared cameras</subject><subject>Infrared tracking</subject><subject>Localization</subject><subject>Macaca</subject><subject>Macaca mulatta</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Micromanipulation</subject><subject>Monkeys</subject><subject>Navigation behavior</subject><subject>Neuronavigation - instrumentation</subject><subject>Neuronavigation - methods</subject><subject>Neurons</subject><subject>Planning</subject><subject>Primates</subject><subject>Recording</subject><subject>Recording sessions</subject><subject>Research and Analysis Methods</subject><subject>Wakefulness - physiology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPlomuRKlvVrYGFBXW9DJj3tZGib2SQd9N-b7nSXqeyF5CIhec6bnDfnZNlLjJaYcvxh6wbf63a5cz0sEUVYFPJRdoolJYuSIPr4aH2SPQthixCjoiyfZidUCMQYJqeZuQ62b3KjO_B60Qy2giqHFkz0roK8sybN3u4h7_XeNjpa1-e18_nOg7EBcvopj9o3EEcZV-edNvpmgHztte3zYCOE59mTWrcBXkzzWXb95fPPi2-Ly6uvq4vzy4VhnMSFlPW6FGItNRhBeVERoSUDSlCVFgaRupApR12XFBAra8JZUYgKKJKSVyWnZ9nrg-6udUFN_gRFUSmJkJziRKwOROX0Vu287bT_o5y26nbD-UZpH61pQcmKmWTzKJ2egmrJiBG1KJAgHGnCktbH6bZh3UFloI9etzPR-UlvN6pxe4UxpqTgZVJ4Nyl4lywLUXU2GGhb3YMbbh-OucCcyYS--Qd9OL2JanTKwPa1SxebUVSdc8mYKJJcopYPUGlUkL47VVNt0_4s4P0sIDERfsdGDyGo1Y_v_89e_Zqzb4_YDeg2boJrh7HGwhwsDmAqxhA81PcuY6TGZrhzQ43NoKZmSGGvjn_oPuiu-ulfNuMDXw</recordid><startdate>20240528</startdate><enddate>20240528</enddate><creator>Crayen, Max Arwed</creator><creator>Kagan, Igor</creator><creator>Esghaei, Moein</creator><creator>Hoehl, Dirk</creator><creator>Thomas, Uwe</creator><creator>Prückl, Robert</creator><creator>Schaffelhofer, Stefan</creator><creator>Treue, Stefan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0003-1643-9640</orcidid><orcidid>https://orcid.org/0000-0002-1814-4200</orcidid><orcidid>https://orcid.org/0000-0002-1621-7701</orcidid></search><sort><creationdate>20240528</creationdate><title>Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites</title><author>Crayen, Max Arwed ; Kagan, Igor ; Esghaei, Moein ; Hoehl, Dirk ; Thomas, Uwe ; Prückl, Robert ; Schaffelhofer, Stefan ; Treue, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-99fb688b9aec8374d28a95e320d8a9c02f49849af63e056f275448de30997d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aluminum</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Cameras</topic><topic>Chambers</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Engineering and Technology</topic><topic>Flexibility</topic><topic>Geometry</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Infrared cameras</topic><topic>Infrared tracking</topic><topic>Localization</topic><topic>Macaca</topic><topic>Macaca mulatta</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Micromanipulation</topic><topic>Monkeys</topic><topic>Navigation behavior</topic><topic>Neuronavigation - instrumentation</topic><topic>Neuronavigation - methods</topic><topic>Neurons</topic><topic>Planning</topic><topic>Primates</topic><topic>Recording</topic><topic>Recording sessions</topic><topic>Research and Analysis Methods</topic><topic>Wakefulness - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crayen, Max Arwed</creatorcontrib><creatorcontrib>Kagan, Igor</creatorcontrib><creatorcontrib>Esghaei, Moein</creatorcontrib><creatorcontrib>Hoehl, Dirk</creatorcontrib><creatorcontrib>Thomas, Uwe</creatorcontrib><creatorcontrib>Prückl, Robert</creatorcontrib><creatorcontrib>Schaffelhofer, Stefan</creatorcontrib><creatorcontrib>Treue, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crayen, Max Arwed</au><au>Kagan, Igor</au><au>Esghaei, Moein</au><au>Hoehl, Dirk</au><au>Thomas, Uwe</au><au>Prückl, Robert</au><au>Schaffelhofer, Stefan</au><au>Treue, Stefan</au><au>Rajagopalan, Uma Maheswari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-05-28</date><risdate>2024</risdate><volume>19</volume><issue>5</issue><spage>e0301849</spage><epage>e0301849</epage><pages>e0301849-e0301849</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Spatial accuracy in electrophysiological investigations is paramount, as precise localization and reliable access to specific brain regions help the advancement of our understanding of the brain's complex neural activity. Here, we introduce a novel, multi camera-based, frameless neuronavigation technique for precise, 3-dimensional electrode positioning in awake monkeys. The investigation of neural functions in awake primates often requires stable access to the brain with thin and delicate recording electrodes. This is usually realized by implanting a chronic recording chamber onto the skull of the animal that allows direct access to the dura. Most recording and positioning techniques utilize this implanted recording chamber as a holder of the microdrive or to hold a grid. This in turn reduces the degrees of freedom in positioning. To solve this problem, we require innovative, flexible, but precise tools for neuronal recordings. We instead mount the electrode microdrive above the animal on an arch, equipped with a series of translational and rotational micromanipulators, allowing movements in all axes. Here, the positioning is controlled by infrared cameras tracking the location of the microdrive and the monkey, allowing precise and flexible trajectories. To verify the accuracy of this technique, we created iron deposits in the tissue that could be detected by MRI. Our results demonstrate a remarkable precision with the confirmed physical location of these deposits averaging less than 0.5 mm from their planned position. Pilot electrophysiological recordings additionally demonstrate the accuracy and flexibility of this method. Our innovative approach could significantly enhance the accuracy and flexibility of neural recordings, potentially catalyzing further advancements in neuroscientific research.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38805512</pmid><doi>10.1371/journal.pone.0301849</doi><tpages>e0301849</tpages><orcidid>https://orcid.org/0009-0003-1643-9640</orcidid><orcidid>https://orcid.org/0000-0002-1814-4200</orcidid><orcidid>https://orcid.org/0000-0002-1621-7701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-05, Vol.19 (5), p.e0301849-e0301849
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3069289731
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Accuracy
Aluminum
Animal behavior
Animals
Biology and Life Sciences
Brain
Brain - physiology
Cameras
Chambers
Electrodes
Electrodes, Implanted
Engineering and Technology
Flexibility
Geometry
Imaging, Three-Dimensional - instrumentation
Imaging, Three-Dimensional - methods
Infrared cameras
Infrared tracking
Localization
Macaca
Macaca mulatta
Male
Medicine and Health Sciences
Micromanipulation
Monkeys
Navigation behavior
Neuronavigation - instrumentation
Neuronavigation - methods
Neurons
Planning
Primates
Recording
Recording sessions
Research and Analysis Methods
Wakefulness - physiology
title Using camera-guided electrode microdrive navigation for precise 3D targeting of macaque brain sites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20camera-guided%20electrode%20microdrive%20navigation%20for%20precise%203D%20targeting%20of%20macaque%20brain%20sites&rft.jtitle=PloS%20one&rft.au=Crayen,%20Max%20Arwed&rft.date=2024-05-28&rft.volume=19&rft.issue=5&rft.spage=e0301849&rft.epage=e0301849&rft.pages=e0301849-e0301849&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0301849&rft_dat=%3Cgale_plos_%3EA795584781%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-99fb688b9aec8374d28a95e320d8a9c02f49849af63e056f275448de30997d673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3069289731&rft_id=info:pmid/38805512&rft_galeid=A795584781&rfr_iscdi=true