Loading…

Contrast enhanced computed tomography of small ruminants: Caprine and ovine

The use of small ruminants, mainly sheep and goats, is increasing in biomedical research. Small ruminants are a desirable animal model due to their human-like anatomy and physiology. However, the large variability between studies and lack of baseline data on these animals creates a barrier to furthe...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-12, Vol.18 (12), p.e0287529-e0287529
Main Authors: Caffrey, Juliette M, Thomas, Patricia K, Appt, Susan E, Burkart, Heather B, Weaver, Caitlin M, Kleinberger, Michael, Gayzik, F Scott
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of small ruminants, mainly sheep and goats, is increasing in biomedical research. Small ruminants are a desirable animal model due to their human-like anatomy and physiology. However, the large variability between studies and lack of baseline data on these animals creates a barrier to further research. This knowledge gap includes a lack of computed tomography (CT) scans for healthy subjects. Full body, contrast enhanced CT scans of caprine and ovine subjects were acquired for subsequent modeling studies. Scans were acquired from an ovine specimen (male, Khatadin, 30-35 kg) and caprine specimen (female, Nubian 30-35 kg). Scans were acquired with and without contrast. Contrast enhanced scans utilized 1.7 mL/kg of contrast administered at 2 mL/s and scans were acquired 20 seconds, 80 seconds, and 5 minutes post-contrast. Scans were taken at 100 kV and 400 mA. Each scan was reconstructed using a bone window and a soft tissue window. Sixteen full body image data sets are presented (2 specimens by 4 contrast levels by 2 reconstruction windows) and are available for download through the form located at: https://redcap.link/COScanData. Scans showed that the post-contrast timing and scan reconstruction method affected structural visualization. The data are intended for further biomedical research on ruminants related to computational model development, device prototyping, comparative diagnostics, intervention planning, and other forms of translational research.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0287529