Loading…

Controlling the counterintuitive optical repulsive thrust of nano dimers with counter propagating type waves and background medium

This work focuses on the utilization of counter-propagating plane waves for optical manipulation, which provides a unique approach to control the behavior of Rayleigh and Dipolar nanoparticles immersed in a homogeneous or heterogeneous medium. Our study presents an interesting finding of a repulsive...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2023-12, Vol.18 (12), p.e0295679-e0295679
Main Authors: Biswas, Sudipta, Mahdy, M R C, Das, Saikat Chandra, Bhuiyan, Md Ariful Islam, Talukder, Mohammad Abir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work focuses on the utilization of counter-propagating plane waves for optical manipulation, which provides a unique approach to control the behavior of Rayleigh and Dipolar nanoparticles immersed in a homogeneous or heterogeneous medium. Our study presents an interesting finding of a repulsive force between plasmonic-chiral heterodimers where the particles move away from each other in both near and far field regions. Interestingly, this repulsive thrust supports the wave like nature of light for the case of homogeneous background but particle type nature of light for heterogenous background. At first, we have investigated the theory underlying the optical trapping of the chiral particle and the impact of this phenomenon on the overall repulsive behavior of the heterodimers placed in air (homogeneous) background. After that, our proposed set-up has further been investigated putting in air-water interface (heterogenous background) and by varying light angle only a little bit. Our observation for this interface case is suggesting the transfer of Minkowski momentum of photon to each optically pulled Rayleigh or dipolar particle of the dimer set, which ultimately causes a broad-band giant repulsive thrust of the dimers. However, in absence of the other particle in the cluster, a single half-immersed particle does not experience the pulling force for the broad-band spectrum. The 'common' reason of the observed repulsive thrust of the dimers for both the aforementioned cases has been attributed to "modified" longitudinal Optical Binding Force (OBF). Technically, this work may open a new way to control the repulsion and attraction between the nanoparticles both in near and far field regions by utilizing the background and the counter-propagating waves. We also believe that this work manifests a possible simple set-up, which will support to observe a background dependent wave 'or' particle nature of light experimentally.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0295679