Loading…

Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions

Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-06, Vol.19 (6), p.e0305133
Main Authors: Zhang, Jing, Xu, Yanxia, Lu, Kaixing, Gong, Zhengyu, Weng, Zhenming, Shu, Pengzhou, Chen, Yujia, Jin, Songheng, Li, Xueqin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3
container_end_page
container_issue 6
container_start_page e0305133
container_title PloS one
container_volume 19
creator Zhang, Jing
Xu, Yanxia
Lu, Kaixing
Gong, Zhengyu
Weng, Zhenming
Shu, Pengzhou
Chen, Yujia
Jin, Songheng
Li, Xueqin
description Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.
doi_str_mv 10.1371/journal.pone.0305133
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3073137357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799228806</galeid><doaj_id>oai_doaj_org_article_cd81ade10d8b46dfb1b9d55489c5e7a2</doaj_id><sourcerecordid>A799228806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZe5Pkmpt0Kh4O01ZJKTmZRMsiaZ1n4hP6fZ7rZ0pQ-Sh4Tkd_4n-Z-conhO8JKwhrw793Nwwi5X3sESM1wRxh4U-6RjdFFTzB7eWe8VT2I8x7hibV0_LvZY27Gqpmy_-PPBaA0BnISIjEODiAh-y1G4AQ6RHK0PfjVeWYu0nX2AKNfoIRJOocmr2YoECgXQFmQy3iGvkTXDmJBIqKUYuQn1kC4BHEqXHoXRK6_AqZBZOdtkLkSIaHYKAhJ2noybJxRTzhSR9E6ZtWp8WjzSwkZ4tp0Pih-fPn4__rI4Pft8cnx0upBVQ9OiY40E3EBdNwpK3bG-JLiluqdUsIoKqQnQHnd1W5eUlYx1WgmspVKsbUij2EHxcqO7sj7yrcWRM9ywbDqrmkycbAjlxTlfBTOJcMW9MPx6w4eBi5CMtMClaolQQLBq-7JWuid9p6qqbDtZQSNo1nq_zTb3E6hsbQrC7ojunjgz8sFfcEIowU1bZoU3W4Xgf80QE59MLpG1woGfNxenDOMWZ_TVP-j9z9tSg8gvME77nFiuRflR03WUti2uM7W8h8pDwWRy1UCbvL8T8HYnIDMJfqdBzDHyk29f_589-7nLvr7DjiBsGqO38_Wn2QXLDSiDjzH_11uXCebrfrpxg6_7iW_7KYe9uFuh26CbBmJ_AXh_Hjc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073137357</pqid></control><display><type>article</type><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin</creator><contributor>Gururani, Mayank</contributor><creatorcontrib>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin ; Gururani, Mayank</creatorcontrib><description>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305133</identifier><identifier>PMID: 38935623</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidic soils ; Acidification ; Agricultural production ; Aluminum ; Aluminum - toxicity ; Biology and Life Sciences ; Carbon dioxide ; Carbon dioxide concentration ; Chlorophyll ; Chlorophyll - metabolism ; Citrus ; Citrus fruits ; Cultivars ; Earth sciences ; Ecology and environmental sciences ; Electron transport ; Electron Transport - drug effects ; Electron transport chain ; Fluorescence ; Gas exchange ; Leaves ; Light ; Light reflection ; Oxidation ; Photosynthesis ; Photosynthesis - drug effects ; Photosynthetic activity ; Photosystem I ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physical sciences ; Plant growth ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; Plastocyanin ; Rhododendron - metabolism ; Seedlings ; Stomata ; Stomatal conductance ; Stress ; Stress, Physiological - drug effects ; Toxicity</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0305133</ispartof><rights>Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Zhang et al 2024 Zhang et al</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</cites><orcidid>0009-0007-7848-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3073137357/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3073137357?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38935623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gururani, Mayank</contributor><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Yanxia</creatorcontrib><creatorcontrib>Lu, Kaixing</creatorcontrib><creatorcontrib>Gong, Zhengyu</creatorcontrib><creatorcontrib>Weng, Zhenming</creatorcontrib><creatorcontrib>Shu, Pengzhou</creatorcontrib><creatorcontrib>Chen, Yujia</creatorcontrib><creatorcontrib>Jin, Songheng</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</description><subject>Acidic soils</subject><subject>Acidification</subject><subject>Agricultural production</subject><subject>Aluminum</subject><subject>Aluminum - toxicity</subject><subject>Biology and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>Cultivars</subject><subject>Earth sciences</subject><subject>Ecology and environmental sciences</subject><subject>Electron transport</subject><subject>Electron Transport - drug effects</subject><subject>Electron transport chain</subject><subject>Fluorescence</subject><subject>Gas exchange</subject><subject>Leaves</subject><subject>Light</subject><subject>Light reflection</subject><subject>Oxidation</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthetic activity</subject><subject>Photosystem I</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physical sciences</subject><subject>Plant growth</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plastocyanin</subject><subject>Rhododendron - metabolism</subject><subject>Seedlings</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Stress</subject><subject>Stress, Physiological - drug effects</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZe5Pkmpt0Kh4O01ZJKTmZRMsiaZ1n4hP6fZ7rZ0pQ-Sh4Tkd_4n-Z-conhO8JKwhrw793Nwwi5X3sESM1wRxh4U-6RjdFFTzB7eWe8VT2I8x7hibV0_LvZY27Gqpmy_-PPBaA0BnISIjEODiAh-y1G4AQ6RHK0PfjVeWYu0nX2AKNfoIRJOocmr2YoECgXQFmQy3iGvkTXDmJBIqKUYuQn1kC4BHEqXHoXRK6_AqZBZOdtkLkSIaHYKAhJ2noybJxRTzhSR9E6ZtWp8WjzSwkZ4tp0Pih-fPn4__rI4Pft8cnx0upBVQ9OiY40E3EBdNwpK3bG-JLiluqdUsIoKqQnQHnd1W5eUlYx1WgmspVKsbUij2EHxcqO7sj7yrcWRM9ywbDqrmkycbAjlxTlfBTOJcMW9MPx6w4eBi5CMtMClaolQQLBq-7JWuid9p6qqbDtZQSNo1nq_zTb3E6hsbQrC7ojunjgz8sFfcEIowU1bZoU3W4Xgf80QE59MLpG1woGfNxenDOMWZ_TVP-j9z9tSg8gvME77nFiuRflR03WUti2uM7W8h8pDwWRy1UCbvL8T8HYnIDMJfqdBzDHyk29f_589-7nLvr7DjiBsGqO38_Wn2QXLDSiDjzH_11uXCebrfrpxg6_7iW_7KYe9uFuh26CbBmJ_AXh_Hjc</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Zhang, Jing</creator><creator>Xu, Yanxia</creator><creator>Lu, Kaixing</creator><creator>Gong, Zhengyu</creator><creator>Weng, Zhenming</creator><creator>Shu, Pengzhou</creator><creator>Chen, Yujia</creator><creator>Jin, Songheng</creator><creator>Li, Xueqin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-7848-8244</orcidid></search><sort><creationdate>20240627</creationdate><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><author>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic soils</topic><topic>Acidification</topic><topic>Agricultural production</topic><topic>Aluminum</topic><topic>Aluminum - toxicity</topic><topic>Biology and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>Cultivars</topic><topic>Earth sciences</topic><topic>Ecology and environmental sciences</topic><topic>Electron transport</topic><topic>Electron Transport - drug effects</topic><topic>Electron transport chain</topic><topic>Fluorescence</topic><topic>Gas exchange</topic><topic>Leaves</topic><topic>Light</topic><topic>Light reflection</topic><topic>Oxidation</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthetic activity</topic><topic>Photosystem I</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physical sciences</topic><topic>Plant growth</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plastocyanin</topic><topic>Rhododendron - metabolism</topic><topic>Seedlings</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Stress</topic><topic>Stress, Physiological - drug effects</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Yanxia</creatorcontrib><creatorcontrib>Lu, Kaixing</creatorcontrib><creatorcontrib>Gong, Zhengyu</creatorcontrib><creatorcontrib>Weng, Zhenming</creatorcontrib><creatorcontrib>Shu, Pengzhou</creatorcontrib><creatorcontrib>Chen, Yujia</creatorcontrib><creatorcontrib>Jin, Songheng</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Xu, Yanxia</au><au>Lu, Kaixing</au><au>Gong, Zhengyu</au><au>Weng, Zhenming</au><au>Shu, Pengzhou</au><au>Chen, Yujia</au><au>Jin, Songheng</au><au>Li, Xueqin</au><au>Gururani, Mayank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0305133</spage><pages>e0305133-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38935623</pmid><doi>10.1371/journal.pone.0305133</doi><tpages>e0305133</tpages><orcidid>https://orcid.org/0009-0007-7848-8244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-06, Vol.19 (6), p.e0305133
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3073137357
source PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Acidic soils
Acidification
Agricultural production
Aluminum
Aluminum - toxicity
Biology and Life Sciences
Carbon dioxide
Carbon dioxide concentration
Chlorophyll
Chlorophyll - metabolism
Citrus
Citrus fruits
Cultivars
Earth sciences
Ecology and environmental sciences
Electron transport
Electron Transport - drug effects
Electron transport chain
Fluorescence
Gas exchange
Leaves
Light
Light reflection
Oxidation
Photosynthesis
Photosynthesis - drug effects
Photosynthetic activity
Photosystem I
Photosystem I Protein Complex - metabolism
Photosystem II
Photosystem II Protein Complex - metabolism
Physical sciences
Plant growth
Plant Leaves - drug effects
Plant Leaves - metabolism
Plastocyanin
Rhododendron - metabolism
Seedlings
Stomata
Stomatal conductance
Stress
Stress, Physiological - drug effects
Toxicity
title Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20gas%20exchange,%20chlorophyll%20fluorescence,%20and%20modulated%20reflection%20of%20light%20at%20820%20nm%20between%20two%20rhododendron%20cultivars%20under%20aluminum%20stress%20conditions&rft.jtitle=PloS%20one&rft.au=Zhang,%20Jing&rft.date=2024-06-27&rft.volume=19&rft.issue=6&rft.spage=e0305133&rft.pages=e0305133-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305133&rft_dat=%3Cgale_plos_%3EA799228806%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073137357&rft_id=info:pmid/38935623&rft_galeid=A799228806&rfr_iscdi=true