Loading…
Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions
Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of...
Saved in:
Published in: | PloS one 2024-06, Vol.19 (6), p.e0305133 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3 |
container_end_page | |
container_issue | 6 |
container_start_page | e0305133 |
container_title | PloS one |
container_volume | 19 |
creator | Zhang, Jing Xu, Yanxia Lu, Kaixing Gong, Zhengyu Weng, Zhenming Shu, Pengzhou Chen, Yujia Jin, Songheng Li, Xueqin |
description | Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao. |
doi_str_mv | 10.1371/journal.pone.0305133 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3073137357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A799228806</galeid><doaj_id>oai_doaj_org_article_cd81ade10d8b46dfb1b9d55489c5e7a2</doaj_id><sourcerecordid>A799228806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</originalsourceid><addsrcrecordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZe5Pkmpt0Kh4O01ZJKTmZRMsiaZ1n4hP6fZ7rZ0pQ-Sh4Tkd_4n-Z-conhO8JKwhrw793Nwwi5X3sESM1wRxh4U-6RjdFFTzB7eWe8VT2I8x7hibV0_LvZY27Gqpmy_-PPBaA0BnISIjEODiAh-y1G4AQ6RHK0PfjVeWYu0nX2AKNfoIRJOocmr2YoECgXQFmQy3iGvkTXDmJBIqKUYuQn1kC4BHEqXHoXRK6_AqZBZOdtkLkSIaHYKAhJ2noybJxRTzhSR9E6ZtWp8WjzSwkZ4tp0Pih-fPn4__rI4Pft8cnx0upBVQ9OiY40E3EBdNwpK3bG-JLiluqdUsIoKqQnQHnd1W5eUlYx1WgmspVKsbUij2EHxcqO7sj7yrcWRM9ywbDqrmkycbAjlxTlfBTOJcMW9MPx6w4eBi5CMtMClaolQQLBq-7JWuid9p6qqbDtZQSNo1nq_zTb3E6hsbQrC7ojunjgz8sFfcEIowU1bZoU3W4Xgf80QE59MLpG1woGfNxenDOMWZ_TVP-j9z9tSg8gvME77nFiuRflR03WUti2uM7W8h8pDwWRy1UCbvL8T8HYnIDMJfqdBzDHyk29f_589-7nLvr7DjiBsGqO38_Wn2QXLDSiDjzH_11uXCebrfrpxg6_7iW_7KYe9uFuh26CbBmJ_AXh_Hjc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3073137357</pqid></control><display><type>article</type><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin</creator><contributor>Gururani, Mayank</contributor><creatorcontrib>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin ; Gururani, Mayank</creatorcontrib><description>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0305133</identifier><identifier>PMID: 38935623</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acidic soils ; Acidification ; Agricultural production ; Aluminum ; Aluminum - toxicity ; Biology and Life Sciences ; Carbon dioxide ; Carbon dioxide concentration ; Chlorophyll ; Chlorophyll - metabolism ; Citrus ; Citrus fruits ; Cultivars ; Earth sciences ; Ecology and environmental sciences ; Electron transport ; Electron Transport - drug effects ; Electron transport chain ; Fluorescence ; Gas exchange ; Leaves ; Light ; Light reflection ; Oxidation ; Photosynthesis ; Photosynthesis - drug effects ; Photosynthetic activity ; Photosystem I ; Photosystem I Protein Complex - metabolism ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physical sciences ; Plant growth ; Plant Leaves - drug effects ; Plant Leaves - metabolism ; Plastocyanin ; Rhododendron - metabolism ; Seedlings ; Stomata ; Stomatal conductance ; Stress ; Stress, Physiological - drug effects ; Toxicity</subject><ispartof>PloS one, 2024-06, Vol.19 (6), p.e0305133</ispartof><rights>Copyright: © 2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Zhang et al 2024 Zhang et al</rights><rights>2024 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</cites><orcidid>0009-0007-7848-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3073137357/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3073137357?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38935623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gururani, Mayank</contributor><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Yanxia</creatorcontrib><creatorcontrib>Lu, Kaixing</creatorcontrib><creatorcontrib>Gong, Zhengyu</creatorcontrib><creatorcontrib>Weng, Zhenming</creatorcontrib><creatorcontrib>Shu, Pengzhou</creatorcontrib><creatorcontrib>Chen, Yujia</creatorcontrib><creatorcontrib>Jin, Songheng</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</description><subject>Acidic soils</subject><subject>Acidification</subject><subject>Agricultural production</subject><subject>Aluminum</subject><subject>Aluminum - toxicity</subject><subject>Biology and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>Citrus</subject><subject>Citrus fruits</subject><subject>Cultivars</subject><subject>Earth sciences</subject><subject>Ecology and environmental sciences</subject><subject>Electron transport</subject><subject>Electron Transport - drug effects</subject><subject>Electron transport chain</subject><subject>Fluorescence</subject><subject>Gas exchange</subject><subject>Leaves</subject><subject>Light</subject><subject>Light reflection</subject><subject>Oxidation</subject><subject>Photosynthesis</subject><subject>Photosynthesis - drug effects</subject><subject>Photosynthetic activity</subject><subject>Photosystem I</subject><subject>Photosystem I Protein Complex - metabolism</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physical sciences</subject><subject>Plant growth</subject><subject>Plant Leaves - drug effects</subject><subject>Plant Leaves - metabolism</subject><subject>Plastocyanin</subject><subject>Rhododendron - metabolism</subject><subject>Seedlings</subject><subject>Stomata</subject><subject>Stomatal conductance</subject><subject>Stress</subject><subject>Stress, Physiological - drug effects</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1trFDEUxwdRbK1-A9GAIArdNZe5Pkmpt0Kh4O01ZJKTmZRMsiaZ1n4hP6fZ7rZ0pQ-Sh4Tkd_4n-Z-conhO8JKwhrw793Nwwi5X3sESM1wRxh4U-6RjdFFTzB7eWe8VT2I8x7hibV0_LvZY27Gqpmy_-PPBaA0BnISIjEODiAh-y1G4AQ6RHK0PfjVeWYu0nX2AKNfoIRJOocmr2YoECgXQFmQy3iGvkTXDmJBIqKUYuQn1kC4BHEqXHoXRK6_AqZBZOdtkLkSIaHYKAhJ2noybJxRTzhSR9E6ZtWp8WjzSwkZ4tp0Pih-fPn4__rI4Pft8cnx0upBVQ9OiY40E3EBdNwpK3bG-JLiluqdUsIoKqQnQHnd1W5eUlYx1WgmspVKsbUij2EHxcqO7sj7yrcWRM9ywbDqrmkycbAjlxTlfBTOJcMW9MPx6w4eBi5CMtMClaolQQLBq-7JWuid9p6qqbDtZQSNo1nq_zTb3E6hsbQrC7ojunjgz8sFfcEIowU1bZoU3W4Xgf80QE59MLpG1woGfNxenDOMWZ_TVP-j9z9tSg8gvME77nFiuRflR03WUti2uM7W8h8pDwWRy1UCbvL8T8HYnIDMJfqdBzDHyk29f_589-7nLvr7DjiBsGqO38_Wn2QXLDSiDjzH_11uXCebrfrpxg6_7iW_7KYe9uFuh26CbBmJ_AXh_Hjc</recordid><startdate>20240627</startdate><enddate>20240627</enddate><creator>Zhang, Jing</creator><creator>Xu, Yanxia</creator><creator>Lu, Kaixing</creator><creator>Gong, Zhengyu</creator><creator>Weng, Zhenming</creator><creator>Shu, Pengzhou</creator><creator>Chen, Yujia</creator><creator>Jin, Songheng</creator><creator>Li, Xueqin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0007-7848-8244</orcidid></search><sort><creationdate>20240627</creationdate><title>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</title><author>Zhang, Jing ; Xu, Yanxia ; Lu, Kaixing ; Gong, Zhengyu ; Weng, Zhenming ; Shu, Pengzhou ; Chen, Yujia ; Jin, Songheng ; Li, Xueqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acidic soils</topic><topic>Acidification</topic><topic>Agricultural production</topic><topic>Aluminum</topic><topic>Aluminum - toxicity</topic><topic>Biology and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>Citrus</topic><topic>Citrus fruits</topic><topic>Cultivars</topic><topic>Earth sciences</topic><topic>Ecology and environmental sciences</topic><topic>Electron transport</topic><topic>Electron Transport - drug effects</topic><topic>Electron transport chain</topic><topic>Fluorescence</topic><topic>Gas exchange</topic><topic>Leaves</topic><topic>Light</topic><topic>Light reflection</topic><topic>Oxidation</topic><topic>Photosynthesis</topic><topic>Photosynthesis - drug effects</topic><topic>Photosynthetic activity</topic><topic>Photosystem I</topic><topic>Photosystem I Protein Complex - metabolism</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physical sciences</topic><topic>Plant growth</topic><topic>Plant Leaves - drug effects</topic><topic>Plant Leaves - metabolism</topic><topic>Plastocyanin</topic><topic>Rhododendron - metabolism</topic><topic>Seedlings</topic><topic>Stomata</topic><topic>Stomatal conductance</topic><topic>Stress</topic><topic>Stress, Physiological - drug effects</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Xu, Yanxia</creatorcontrib><creatorcontrib>Lu, Kaixing</creatorcontrib><creatorcontrib>Gong, Zhengyu</creatorcontrib><creatorcontrib>Weng, Zhenming</creatorcontrib><creatorcontrib>Shu, Pengzhou</creatorcontrib><creatorcontrib>Chen, Yujia</creatorcontrib><creatorcontrib>Jin, Songheng</creatorcontrib><creatorcontrib>Li, Xueqin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jing</au><au>Xu, Yanxia</au><au>Lu, Kaixing</au><au>Gong, Zhengyu</au><au>Weng, Zhenming</au><au>Shu, Pengzhou</au><au>Chen, Yujia</au><au>Jin, Songheng</au><au>Li, Xueqin</au><au>Gururani, Mayank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-06-27</date><risdate>2024</risdate><volume>19</volume><issue>6</issue><spage>e0305133</spage><pages>e0305133-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Aluminum (Al) toxicity is an important factor restricting the normal growth of plants in acidic soil. Rhododendron (Ericaceae) can grow relatively well in acidic soil. To uncover the adaptive mechanisms of photosynthesis under Al stress, the influence of Al stress on the photosynthetic activities of Al-sensitive (Baijinpao) and Al-resistant (Kangnaixin) rhododendron cultivars was examined by measuring gas exchange, chlorophyll fluorescence, and the modulated reflection of light at 820 nm. Under Al stress conditions, the net photosynthetic rate and stomatal conductance of the rhododendron leaves decreased, whereas the intercellular CO2 concentration increased. The Al stress treatment damaged the oxygen-evolving complex of the rhododendron seedlings, while also inhibiting electron transport on the photosystem II (PSII) donor side. In addition, the exposure to Al stress restricted the oxidation of plastocyanin (PC) and the photosystem I (PSI) reaction center (P700) and led to the re-reduction of PC+ and P700+. The comparison with Kangnaixin revealed an increase in the PSII connectivity in Baijinpao. Additionally, the donor-side electron transport efficiency was more inhibited and the overall activity of PSII, PSI, and the intersystem electron transport chain decreased more extensively in Baijinpao than in Kangnaixin. On the basis of the study findings, we concluded that Al stress adversely affects photosynthesis in rhododendron seedlings by significantly decreasing the activity of PSII and PSI. Under Al stress, Kangnaixin showed stronger tolerance compared with Baijinpao.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>38935623</pmid><doi>10.1371/journal.pone.0305133</doi><tpages>e0305133</tpages><orcidid>https://orcid.org/0009-0007-7848-8244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-06, Vol.19 (6), p.e0305133 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3073137357 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Acidic soils Acidification Agricultural production Aluminum Aluminum - toxicity Biology and Life Sciences Carbon dioxide Carbon dioxide concentration Chlorophyll Chlorophyll - metabolism Citrus Citrus fruits Cultivars Earth sciences Ecology and environmental sciences Electron transport Electron Transport - drug effects Electron transport chain Fluorescence Gas exchange Leaves Light Light reflection Oxidation Photosynthesis Photosynthesis - drug effects Photosynthetic activity Photosystem I Photosystem I Protein Complex - metabolism Photosystem II Photosystem II Protein Complex - metabolism Physical sciences Plant growth Plant Leaves - drug effects Plant Leaves - metabolism Plastocyanin Rhododendron - metabolism Seedlings Stomata Stomatal conductance Stress Stress, Physiological - drug effects Toxicity |
title | Differences in gas exchange, chlorophyll fluorescence, and modulated reflection of light at 820 nm between two rhododendron cultivars under aluminum stress conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differences%20in%20gas%20exchange,%20chlorophyll%20fluorescence,%20and%20modulated%20reflection%20of%20light%20at%20820%20nm%20between%20two%20rhododendron%20cultivars%20under%20aluminum%20stress%20conditions&rft.jtitle=PloS%20one&rft.au=Zhang,%20Jing&rft.date=2024-06-27&rft.volume=19&rft.issue=6&rft.spage=e0305133&rft.pages=e0305133-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0305133&rft_dat=%3Cgale_plos_%3EA799228806%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-937ce07e667de4f93b41082fb22a352acf1e2b096864234339fda0fcdd38717d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3073137357&rft_id=info:pmid/38935623&rft_galeid=A799228806&rfr_iscdi=true |