Loading…
A refined reweighing technique for nondiscriminatory classification
Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or lab...
Saved in:
Published in: | PloS one 2024-08, Vol.19 (8), p.e0308661 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 8 |
container_start_page | e0308661 |
container_title | PloS one |
container_volume | 19 |
creator | Liang, Yuefeng Hsieh, Cho-Jui Lee, Thomas C M |
description | Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available at https://github.com/frnliang/refined_reweighing. |
doi_str_mv | 10.1371/journal.pone.0308661 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3095082486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A805496303</galeid><doaj_id>oai_doaj_org_article_083564f6fe6d4db88a12243a034fb073</doaj_id><sourcerecordid>A805496303</sourcerecordid><originalsourceid>FETCH-LOGICAL-d527t-5d51632ab46b0350306641b0bb9afd998261ae3ebc97aa0761b8f337a97fca4b3</originalsourceid><addsrcrecordid>eNqNkt-L1DAQx4so3nn6H4guCIc-7Jpk0rR9kmXxx8LBgb9ew6RN2izdZK9p9e6_N3WrbOUeJA8TJp98vzPDJMlzSlYUMvp254fOYbs6eKdXBEguBH2QnNMC2FIwAg9P7mfJkxB2hKQQqcfJGRRUADA4TzbrRaeNdbqK8ae2dWNdveh12Th7M-iF8d3CeVfZUHZ2bx32vrtblC2GYI0tsbfePU0eGWyDfjbFi-Tbh_dfN5-WV9cft5v11bJKWdYv0yqNrgwVF4pAGksWglNFlCrQVEWRM0FRg1ZlkSGSTFCVG4AMi8yUyBVcJC-PuofWBzn1HySQIiU547mIxPZIVB538hArxu5OerTyd8J3tcSut2WrJckhFdwIo0XFK5XnSBnjgAS4USSDqPVuchvUXleldn2H7Ux0_uJsI2v_Q1IKkFIyVvN6Uuh8nGXo5T6OUbctOu2HY-E0Y5yNZq_-Qe9vb6JqjB1YZ3w0LkdRuc5JygsBZNRa3UPFU-m9LeO2GBvzsw9vZh8i0-vbvsYhBLn98vn_2evvc_byhG00tn0TfDuMOxPm4IvTUf-d8Z81hV_o6eat</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095082486</pqid></control><display><type>article</type><title>A refined reweighing technique for nondiscriminatory classification</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Liang, Yuefeng ; Hsieh, Cho-Jui ; Lee, Thomas C M</creator><creatorcontrib>Liang, Yuefeng ; Hsieh, Cho-Jui ; Lee, Thomas C M</creatorcontrib><description>Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available at https://github.com/frnliang/refined_reweighing.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0308661</identifier><identifier>PMID: 39163323</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; Classification ; Computer and Information Sciences ; Discrimination ; Humans ; Linear programming ; Machine Learning ; Methods ; Optimization ; Parity ; Physical Sciences ; Probability ; Probability distribution ; Research and Analysis Methods ; Simulation</subject><ispartof>PloS one, 2024-08, Vol.19 (8), p.e0308661</ispartof><rights>Copyright: © 2024 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Liang et al 2024 Liang et al</rights><rights>2024 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7067-405X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3095082486/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3095082486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39163323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Yuefeng</creatorcontrib><creatorcontrib>Hsieh, Cho-Jui</creatorcontrib><creatorcontrib>Lee, Thomas C M</creatorcontrib><title>A refined reweighing technique for nondiscriminatory classification</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available at https://github.com/frnliang/refined_reweighing.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Discrimination</subject><subject>Humans</subject><subject>Linear programming</subject><subject>Machine Learning</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parity</subject><subject>Physical Sciences</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Research and Analysis Methods</subject><subject>Simulation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkt-L1DAQx4so3nn6H4guCIc-7Jpk0rR9kmXxx8LBgb9ew6RN2izdZK9p9e6_N3WrbOUeJA8TJp98vzPDJMlzSlYUMvp254fOYbs6eKdXBEguBH2QnNMC2FIwAg9P7mfJkxB2hKQQqcfJGRRUADA4TzbrRaeNdbqK8ae2dWNdveh12Th7M-iF8d3CeVfZUHZ2bx32vrtblC2GYI0tsbfePU0eGWyDfjbFi-Tbh_dfN5-WV9cft5v11bJKWdYv0yqNrgwVF4pAGksWglNFlCrQVEWRM0FRg1ZlkSGSTFCVG4AMi8yUyBVcJC-PuofWBzn1HySQIiU547mIxPZIVB538hArxu5OerTyd8J3tcSut2WrJckhFdwIo0XFK5XnSBnjgAS4USSDqPVuchvUXleldn2H7Ux0_uJsI2v_Q1IKkFIyVvN6Uuh8nGXo5T6OUbctOu2HY-E0Y5yNZq_-Qe9vb6JqjB1YZ3w0LkdRuc5JygsBZNRa3UPFU-m9LeO2GBvzsw9vZh8i0-vbvsYhBLn98vn_2evvc_byhG00tn0TfDuMOxPm4IvTUf-d8Z81hV_o6eat</recordid><startdate>20240820</startdate><enddate>20240820</enddate><creator>Liang, Yuefeng</creator><creator>Hsieh, Cho-Jui</creator><creator>Lee, Thomas C M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7067-405X</orcidid></search><sort><creationdate>20240820</creationdate><title>A refined reweighing technique for nondiscriminatory classification</title><author>Liang, Yuefeng ; Hsieh, Cho-Jui ; Lee, Thomas C M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d527t-5d51632ab46b0350306641b0bb9afd998261ae3ebc97aa0761b8f337a97fca4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Discrimination</topic><topic>Humans</topic><topic>Linear programming</topic><topic>Machine Learning</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parity</topic><topic>Physical Sciences</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Research and Analysis Methods</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Yuefeng</creatorcontrib><creatorcontrib>Hsieh, Cho-Jui</creatorcontrib><creatorcontrib>Lee, Thomas C M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Yuefeng</au><au>Hsieh, Cho-Jui</au><au>Lee, Thomas C M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A refined reweighing technique for nondiscriminatory classification</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-08-20</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>e0308661</spage><pages>e0308661-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available at https://github.com/frnliang/refined_reweighing.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39163323</pmid><doi>10.1371/journal.pone.0308661</doi><tpages>e0308661</tpages><orcidid>https://orcid.org/0000-0001-7067-405X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-08, Vol.19 (8), p.e0308661 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3095082486 |
source | Access via ProQuest (Open Access); PubMed Central |
subjects | Accuracy Algorithms Analysis Artificial intelligence Classification Computer and Information Sciences Discrimination Humans Linear programming Machine Learning Methods Optimization Parity Physical Sciences Probability Probability distribution Research and Analysis Methods Simulation |
title | A refined reweighing technique for nondiscriminatory classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20refined%20reweighing%20technique%20for%20nondiscriminatory%20classification&rft.jtitle=PloS%20one&rft.au=Liang,%20Yuefeng&rft.date=2024-08-20&rft.volume=19&rft.issue=8&rft.spage=e0308661&rft.pages=e0308661-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0308661&rft_dat=%3Cgale_plos_%3EA805496303%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d527t-5d51632ab46b0350306641b0bb9afd998261ae3ebc97aa0761b8f337a97fca4b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3095082486&rft_id=info:pmid/39163323&rft_galeid=A805496303&rfr_iscdi=true |