Loading…

Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis

Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversi...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-08, Vol.19 (8), p.e0309192
Main Authors: Webb, Rebecca J, Vu, Andrea L, Skerratt, Lee F, Berger, Lee, De Jesús Andino, Francisco, Robert, Jacques
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c572t-5c50fc941b68269b24257e40dcbf9f9a27f69265cf19f7c06846a72c1b1721b43
container_end_page
container_issue 8
container_start_page e0309192
container_title PloS one
container_volume 19
creator Webb, Rebecca J
Vu, Andrea L
Skerratt, Lee F
Berger, Lee
De Jesús Andino, Francisco
Robert, Jacques
description Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.
doi_str_mv 10.1371/journal.pone.0309192
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3098716508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A806591290</galeid><doaj_id>oai_doaj_org_article_b08337de48c84fe9adac26b2b30d5401</doaj_id><sourcerecordid>A806591290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-5c50fc941b68269b24257e40dcbf9f9a27f69265cf19f7c06846a72c1b1721b43</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnaps2VrIsfAwsLrnob8tlmSZsxSQf335vOdJep7IX0oiF93jc978nJspcQrGFRww83bvQDs-utG9QaFIBAgh5lp5AUaIURKB4frU-yZyHcAFAVDcZPs5OCINCgEpxm_XVk3KrcDPnORO9ybUfnVRBqECrXzudq6Fhay9yaXeJ61pqhzZ1OEq1ENG7IeyeVDXv6E4ueic6J7jZ6M_a5VIP0jrNopAnPsyea2aBezO-z7OeXzz8uvq0ur75uLs4vV6KqUVxVogJakBJy3CBMOCpRVasSSME10YShWmOCcCU0JLoWADclZjUSkMMaQV4WZ9nrg-_WukDnpAJNITU1xBVoErE5ENKxG7r1qS5_Sx0zdL_hfEuZj0ZYRXnCi1qqshFNqRVhkgmEOeIFkFUJYPL6OJ828l7JFF3KwC5Ml18G09HW7SiEBYYVQcnh3ezg3e9RhUh7k1pgLRuUG_c_ThqQ-jehb_5BHy5vplqWKkidclNbJlN63gBcEYgISNT6ASo9UvVGpHulTdpfCN4vBImJ6k9s2RgC3Vx__3_26teSfXvEdorZ2AVnx-l2hSVYHkDhXQhe6fuUIaDTWNylQaexoPNYJNmr4w7di-7moPgLEykIRw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098716508</pqid></control><display><type>article</type><title>Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Webb, Rebecca J ; Vu, Andrea L ; Skerratt, Lee F ; Berger, Lee ; De Jesús Andino, Francisco ; Robert, Jacques</creator><contributor>Dahanukar, Neelesh</contributor><creatorcontrib>Webb, Rebecca J ; Vu, Andrea L ; Skerratt, Lee F ; Berger, Lee ; De Jesús Andino, Francisco ; Robert, Jacques ; Dahanukar, Neelesh</creatorcontrib><description>Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0309192</identifier><identifier>PMID: 39208240</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amphibians ; Analysis ; Animals ; Antifungal agents ; Batrachochytrium - genetics ; Batrachochytrium dendrobatidis ; Biodiversity ; Biodiversity loss ; Biological diversity conservation ; Biology and Life Sciences ; Cell Line ; Chytridiomycosis ; Deoxyribonucleic acid ; Development and progression ; Diagnosis ; DNA ; Electroporation ; Epithelial cells ; Epithelium ; Fibroblasts - metabolism ; Fibroblasts - microbiology ; Fluorescence ; Fluorescence microscopy ; Fungi ; Gene expression ; Genes ; Genetic modification ; Genetically modified organisms ; Green fluorescent protein ; Growth media ; Health aspects ; Hygromycin ; Infection ; Infections ; Kidneys ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Microscopy ; Mycoses - microbiology ; Mycoses - veterinary ; Pathogenesis ; Pathogens ; Plasmids ; Proteins ; Research and Analysis Methods ; Virulence ; Virulence (Microbiology) ; Zoospores</subject><ispartof>PloS one, 2024-08, Vol.19 (8), p.e0309192</ispartof><rights>Copyright: © 2024 Webb et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Webb et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Webb et al 2024 Webb et al</rights><rights>2024 Webb et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-5c50fc941b68269b24257e40dcbf9f9a27f69265cf19f7c06846a72c1b1721b43</cites><orcidid>0000-0002-2539-2755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3098716508/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3098716508?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39208240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dahanukar, Neelesh</contributor><creatorcontrib>Webb, Rebecca J</creatorcontrib><creatorcontrib>Vu, Andrea L</creatorcontrib><creatorcontrib>Skerratt, Lee F</creatorcontrib><creatorcontrib>Berger, Lee</creatorcontrib><creatorcontrib>De Jesús Andino, Francisco</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><title>Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.</description><subject>Amphibians</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antifungal agents</subject><subject>Batrachochytrium - genetics</subject><subject>Batrachochytrium dendrobatidis</subject><subject>Biodiversity</subject><subject>Biodiversity loss</subject><subject>Biological diversity conservation</subject><subject>Biology and Life Sciences</subject><subject>Cell Line</subject><subject>Chytridiomycosis</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>DNA</subject><subject>Electroporation</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - microbiology</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic modification</subject><subject>Genetically modified organisms</subject><subject>Green fluorescent protein</subject><subject>Growth media</subject><subject>Health aspects</subject><subject>Hygromycin</subject><subject>Infection</subject><subject>Infections</subject><subject>Kidneys</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Microscopy</subject><subject>Mycoses - microbiology</subject><subject>Mycoses - veterinary</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Zoospores</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnaps2VrIsfAwsLrnob8tlmSZsxSQf335vOdJep7IX0oiF93jc978nJspcQrGFRww83bvQDs-utG9QaFIBAgh5lp5AUaIURKB4frU-yZyHcAFAVDcZPs5OCINCgEpxm_XVk3KrcDPnORO9ybUfnVRBqECrXzudq6Fhay9yaXeJ61pqhzZ1OEq1ENG7IeyeVDXv6E4ueic6J7jZ6M_a5VIP0jrNopAnPsyea2aBezO-z7OeXzz8uvq0ur75uLs4vV6KqUVxVogJakBJy3CBMOCpRVasSSME10YShWmOCcCU0JLoWADclZjUSkMMaQV4WZ9nrg-_WukDnpAJNITU1xBVoErE5ENKxG7r1qS5_Sx0zdL_hfEuZj0ZYRXnCi1qqshFNqRVhkgmEOeIFkFUJYPL6OJ828l7JFF3KwC5Ml18G09HW7SiEBYYVQcnh3ezg3e9RhUh7k1pgLRuUG_c_ThqQ-jehb_5BHy5vplqWKkidclNbJlN63gBcEYgISNT6ASo9UvVGpHulTdpfCN4vBImJ6k9s2RgC3Vx__3_26teSfXvEdorZ2AVnx-l2hSVYHkDhXQhe6fuUIaDTWNylQaexoPNYJNmr4w7di-7moPgLEykIRw</recordid><startdate>20240829</startdate><enddate>20240829</enddate><creator>Webb, Rebecca J</creator><creator>Vu, Andrea L</creator><creator>Skerratt, Lee F</creator><creator>Berger, Lee</creator><creator>De Jesús Andino, Francisco</creator><creator>Robert, Jacques</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2539-2755</orcidid></search><sort><creationdate>20240829</creationdate><title>Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis</title><author>Webb, Rebecca J ; Vu, Andrea L ; Skerratt, Lee F ; Berger, Lee ; De Jesús Andino, Francisco ; Robert, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-5c50fc941b68269b24257e40dcbf9f9a27f69265cf19f7c06846a72c1b1721b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amphibians</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antifungal agents</topic><topic>Batrachochytrium - genetics</topic><topic>Batrachochytrium dendrobatidis</topic><topic>Biodiversity</topic><topic>Biodiversity loss</topic><topic>Biological diversity conservation</topic><topic>Biology and Life Sciences</topic><topic>Cell Line</topic><topic>Chytridiomycosis</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>DNA</topic><topic>Electroporation</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - microbiology</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic modification</topic><topic>Genetically modified organisms</topic><topic>Green fluorescent protein</topic><topic>Growth media</topic><topic>Health aspects</topic><topic>Hygromycin</topic><topic>Infection</topic><topic>Infections</topic><topic>Kidneys</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Microscopy</topic><topic>Mycoses - microbiology</topic><topic>Mycoses - veterinary</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Zoospores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, Rebecca J</creatorcontrib><creatorcontrib>Vu, Andrea L</creatorcontrib><creatorcontrib>Skerratt, Lee F</creatorcontrib><creatorcontrib>Berger, Lee</creatorcontrib><creatorcontrib>De Jesús Andino, Francisco</creatorcontrib><creatorcontrib>Robert, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints (Gale)</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, Rebecca J</au><au>Vu, Andrea L</au><au>Skerratt, Lee F</au><au>Berger, Lee</au><au>De Jesús Andino, Francisco</au><au>Robert, Jacques</au><au>Dahanukar, Neelesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-08-29</date><risdate>2024</risdate><volume>19</volume><issue>8</issue><spage>e0309192</spage><pages>e0309192-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39208240</pmid><doi>10.1371/journal.pone.0309192</doi><tpages>e0309192</tpages><orcidid>https://orcid.org/0000-0002-2539-2755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-08, Vol.19 (8), p.e0309192
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3098716508
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Amphibians
Analysis
Animals
Antifungal agents
Batrachochytrium - genetics
Batrachochytrium dendrobatidis
Biodiversity
Biodiversity loss
Biological diversity conservation
Biology and Life Sciences
Cell Line
Chytridiomycosis
Deoxyribonucleic acid
Development and progression
Diagnosis
DNA
Electroporation
Epithelial cells
Epithelium
Fibroblasts - metabolism
Fibroblasts - microbiology
Fluorescence
Fluorescence microscopy
Fungi
Gene expression
Genes
Genetic modification
Genetically modified organisms
Green fluorescent protein
Growth media
Health aspects
Hygromycin
Infection
Infections
Kidneys
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Medical research
Medicine and Health Sciences
Medicine, Experimental
Microscopy
Mycoses - microbiology
Mycoses - veterinary
Pathogenesis
Pathogens
Plasmids
Proteins
Research and Analysis Methods
Virulence
Virulence (Microbiology)
Zoospores
title Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20in%20vitro%20fluorescence%20for%20enhanced%20live%20imaging%20of%20infection%20models%20for%20Batrachochytrium%20dendrobatidis&rft.jtitle=PloS%20one&rft.au=Webb,%20Rebecca%20J&rft.date=2024-08-29&rft.volume=19&rft.issue=8&rft.spage=e0309192&rft.pages=e0309192-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0309192&rft_dat=%3Cgale_plos_%3EA806591290%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-5c50fc941b68269b24257e40dcbf9f9a27f69265cf19f7c06846a72c1b1721b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3098716508&rft_id=info:pmid/39208240&rft_galeid=A806591290&rfr_iscdi=true