Loading…

PIK-III exerts anti-fibrotic effects in activated fibroblasts by regulating p38 activation

Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellula...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-09, Vol.19 (9), p.e0306624
Main Authors: Sanchez, Santiago, McDowell-Sanchez, Aaron K, Al-Meerani, Sharaz B, Cala-Garcia, Juan D, Waich Cohen, Alan R, Ochsner, Scott A, McKenna, Neil J, Celada, Lindsay J, Wu, Minghua, Assassi, Shervin, Rosas, Ivan O, Tsoyi, Konstantin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune-driven connective tissue disorder that results in fibrosis of the skin and internal organs such as the lung. Fibroblasts are known as the main effector cells involved in the progression of SSc through the induction of extracellular matrix (ECM) proteins and myofibroblast differentiation. Here, we demonstrate that 4'-(cyclopropylmethyl)-N2-4-pyridinyl-[4,5'-bipyrimidine]-2,2'-diamine (PIK-III), known as class III phosphatidylinositol 3-kinase (PIK3C3/VPS34) inhibitor, exerts potent antifibrotic effects in human dermal fibroblasts (HDFs) by attenuating transforming growth factor-beta 1 (TGF-β1)-induced ECM expression, cell contraction and myofibroblast differentiation. Unexpectedly, neither genetic silencing of PIK3C3 nor other PIK3C3 inhibitors (e.g., SAR405 and Autophinib) were able to mimic PIK-III-mediated antifibrotic effect in dermal fibroblasts, suggesting that PIK-III inhibits fibroblast activation through another signaling pathway. We identified that PIK-III effectively inhibits p38 activation in TGF-β1-stimulated dermal fibroblasts. Finally, PIK-III administration significantly attenuated dermal and lung fibrosis in bleomycin-injured mice.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0306624