Loading…
Unveiling the economic potential of sports industry in China: A data driven analysis
The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this indus...
Saved in:
Published in: | PloS one 2024-09, Vol.19 (9), p.e0310131 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c572t-ff27ea7d2e691399620eecc82f8818411ee175246799d859b5d1c4bc5482bb7a3 |
container_end_page | |
container_issue | 9 |
container_start_page | e0310131 |
container_title | PloS one |
container_volume | 19 |
creator | Liu, Haishan |
description | The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this industry. Therefore, the current research is an attempt to filling this gap by proposing a specific economic model for the sports sector. This paper examines the data of sports industry covering the time span of 2012 to 2022 by using data mining technology for quantitative analyses. Deep learning algorithms and data mining techniques transform the gained information from sports industry databases into sophisticated economic models. The developed model then makes the efficient analysis of diverse datasets for underlying patterns and insights, crucial in realizing the economic trajectory of the industry. The findings of the study reveal the importance of sports industry for economic growth of China. Moreover, the application of deep learning algorithm highlights the importance of continuous learning and training on the economic data from the sports industry. It is, therefore, an entirely novel approach to build up an economic simulation framework using deep learning and data mining, tailored to the intricate dynamics of the sports industry. |
doi_str_mv | 10.1371/journal.pone.0310131 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3103840258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808506424</galeid><doaj_id>oai_doaj_org_article_ed9ac1e0ded248958eaf2d92c3d0867b</doaj_id><sourcerecordid>A808506424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-ff27ea7d2e691399620eecc82f8818411ee175246799d859b5d1c4bc5482bb7a3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nzMR-KNlOJHYWFBd70NmeRMmzJNuklmsf_edDu7dGQvJBcJyXNOznnPm2WvMZphWuNPG9d7K7vZzlmYIYoRpvhJdo45JdOKIPr05HyWvQhhg1BJWVU9z84oJ1XBq_I8u7q2t2A6Y1d5XEMOylm3NSrfuQg2Gtnlrs3DzvkYcmN1H6Lfp0O-WBsrP-fzXMsoc-3NLdhcpnr2wYSX2bNWdgFeDfsku_729WrxY3px-X25mF9MVVmTOG1bUoOsNYGKY8p5qhRAKUZaxjArMAbAdUmKquZcs5I3pcaqaFRZMNI0taST7O0x765zQQyCBJG0oKxApGSJWB4J7eRG7LzZSr8XThpxd-H8SkgfjepAgOZSYUAaNCkYLxnIlmhOFNWIVXWTcn0ZfuubLWiV9PGyGyUdv1izFit3K3BqjtDiUM2HIYN3Nz2EKLYmKOg6acH1d4UXqfQ6jXKSvfsHfby9gVrJ1IGxrUsfq0NSMWeIlagqSJGo2SNUWhrSqJN9WpPuRwEfRwGJifAnrmQfglj--vn_7OXvMfv-hF2D7OI6uK6PxtkwBosjqLwLwUP7oDJG4uD-ezXEwf1icH8Ke3M6oYege7vTv6QQ_pQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103840258</pqid></control><display><type>article</type><title>Unveiling the economic potential of sports industry in China: A data driven analysis</title><source>ProQuest - Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Liu, Haishan</creator><contributor>Xiao, Guangnian</contributor><creatorcontrib>Liu, Haishan ; Xiao, Guangnian</creatorcontrib><description>The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this industry. Therefore, the current research is an attempt to filling this gap by proposing a specific economic model for the sports sector. This paper examines the data of sports industry covering the time span of 2012 to 2022 by using data mining technology for quantitative analyses. Deep learning algorithms and data mining techniques transform the gained information from sports industry databases into sophisticated economic models. The developed model then makes the efficient analysis of diverse datasets for underlying patterns and insights, crucial in realizing the economic trajectory of the industry. The findings of the study reveal the importance of sports industry for economic growth of China. Moreover, the application of deep learning algorithm highlights the importance of continuous learning and training on the economic data from the sports industry. It is, therefore, an entirely novel approach to build up an economic simulation framework using deep learning and data mining, tailored to the intricate dynamics of the sports industry.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310131</identifier><identifier>PMID: 39264965</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; China ; Computer and Information Sciences ; Data analysis ; Data Mining ; Database industry ; Decision making ; Deep Learning ; Economic analysis ; Economic aspects ; Economic development ; Economic growth ; Economic impact ; Economic models ; Evaluation ; Forecasts and trends ; Humans ; Industrial development ; Industry - economics ; Learning algorithms ; Machine learning ; Marketing ; Models, Economic ; People and Places ; Research and Analysis Methods ; Social Sciences ; Sports ; Sports - economics ; Strategic planning ; Technology assessment ; Trajectory analysis ; Trends</subject><ispartof>PloS one, 2024-09, Vol.19 (9), p.e0310131</ispartof><rights>Copyright: © 2024 Haishan Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Haishan Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Haishan Liu 2024 Haishan Liu</rights><rights>2024 Haishan Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c572t-ff27ea7d2e691399620eecc82f8818411ee175246799d859b5d1c4bc5482bb7a3</cites><orcidid>0009-0002-8177-3533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3103840258/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3103840258?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39264965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Xiao, Guangnian</contributor><creatorcontrib>Liu, Haishan</creatorcontrib><title>Unveiling the economic potential of sports industry in China: A data driven analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this industry. Therefore, the current research is an attempt to filling this gap by proposing a specific economic model for the sports sector. This paper examines the data of sports industry covering the time span of 2012 to 2022 by using data mining technology for quantitative analyses. Deep learning algorithms and data mining techniques transform the gained information from sports industry databases into sophisticated economic models. The developed model then makes the efficient analysis of diverse datasets for underlying patterns and insights, crucial in realizing the economic trajectory of the industry. The findings of the study reveal the importance of sports industry for economic growth of China. Moreover, the application of deep learning algorithm highlights the importance of continuous learning and training on the economic data from the sports industry. It is, therefore, an entirely novel approach to build up an economic simulation framework using deep learning and data mining, tailored to the intricate dynamics of the sports industry.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>China</subject><subject>Computer and Information Sciences</subject><subject>Data analysis</subject><subject>Data Mining</subject><subject>Database industry</subject><subject>Decision making</subject><subject>Deep Learning</subject><subject>Economic analysis</subject><subject>Economic aspects</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Economic impact</subject><subject>Economic models</subject><subject>Evaluation</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>Industrial development</subject><subject>Industry - economics</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Marketing</subject><subject>Models, Economic</subject><subject>People and Places</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Sports</subject><subject>Sports - economics</subject><subject>Strategic planning</subject><subject>Technology assessment</subject><subject>Trajectory analysis</subject><subject>Trends</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3LX6D0QHBNGL1nzMR-KNlOJHYWFBd70NmeRMmzJNuklmsf_edDu7dGQvJBcJyXNOznnPm2WvMZphWuNPG9d7K7vZzlmYIYoRpvhJdo45JdOKIPr05HyWvQhhg1BJWVU9z84oJ1XBq_I8u7q2t2A6Y1d5XEMOylm3NSrfuQg2Gtnlrs3DzvkYcmN1H6Lfp0O-WBsrP-fzXMsoc-3NLdhcpnr2wYSX2bNWdgFeDfsku_729WrxY3px-X25mF9MVVmTOG1bUoOsNYGKY8p5qhRAKUZaxjArMAbAdUmKquZcs5I3pcaqaFRZMNI0taST7O0x765zQQyCBJG0oKxApGSJWB4J7eRG7LzZSr8XThpxd-H8SkgfjepAgOZSYUAaNCkYLxnIlmhOFNWIVXWTcn0ZfuubLWiV9PGyGyUdv1izFit3K3BqjtDiUM2HIYN3Nz2EKLYmKOg6acH1d4UXqfQ6jXKSvfsHfby9gVrJ1IGxrUsfq0NSMWeIlagqSJGo2SNUWhrSqJN9WpPuRwEfRwGJifAnrmQfglj--vn_7OXvMfv-hF2D7OI6uK6PxtkwBosjqLwLwUP7oDJG4uD-ezXEwf1icH8Ke3M6oYege7vTv6QQ_pQ</recordid><startdate>20240912</startdate><enddate>20240912</enddate><creator>Liu, Haishan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0002-8177-3533</orcidid></search><sort><creationdate>20240912</creationdate><title>Unveiling the economic potential of sports industry in China: A data driven analysis</title><author>Liu, Haishan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-ff27ea7d2e691399620eecc82f8818411ee175246799d859b5d1c4bc5482bb7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>China</topic><topic>Computer and Information Sciences</topic><topic>Data analysis</topic><topic>Data Mining</topic><topic>Database industry</topic><topic>Decision making</topic><topic>Deep Learning</topic><topic>Economic analysis</topic><topic>Economic aspects</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Economic impact</topic><topic>Economic models</topic><topic>Evaluation</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>Industrial development</topic><topic>Industry - economics</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Marketing</topic><topic>Models, Economic</topic><topic>People and Places</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Sports</topic><topic>Sports - economics</topic><topic>Strategic planning</topic><topic>Technology assessment</topic><topic>Trajectory analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haishan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haishan</au><au>Xiao, Guangnian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the economic potential of sports industry in China: A data driven analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-09-12</date><risdate>2024</risdate><volume>19</volume><issue>9</issue><spage>e0310131</spage><pages>e0310131-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this industry. Therefore, the current research is an attempt to filling this gap by proposing a specific economic model for the sports sector. This paper examines the data of sports industry covering the time span of 2012 to 2022 by using data mining technology for quantitative analyses. Deep learning algorithms and data mining techniques transform the gained information from sports industry databases into sophisticated economic models. The developed model then makes the efficient analysis of diverse datasets for underlying patterns and insights, crucial in realizing the economic trajectory of the industry. The findings of the study reveal the importance of sports industry for economic growth of China. Moreover, the application of deep learning algorithm highlights the importance of continuous learning and training on the economic data from the sports industry. It is, therefore, an entirely novel approach to build up an economic simulation framework using deep learning and data mining, tailored to the intricate dynamics of the sports industry.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39264965</pmid><doi>10.1371/journal.pone.0310131</doi><tpages>e0310131</tpages><orcidid>https://orcid.org/0009-0002-8177-3533</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-09, Vol.19 (9), p.e0310131 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3103840258 |
source | ProQuest - Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Algorithms Biology and Life Sciences China Computer and Information Sciences Data analysis Data Mining Database industry Decision making Deep Learning Economic analysis Economic aspects Economic development Economic growth Economic impact Economic models Evaluation Forecasts and trends Humans Industrial development Industry - economics Learning algorithms Machine learning Marketing Models, Economic People and Places Research and Analysis Methods Social Sciences Sports Sports - economics Strategic planning Technology assessment Trajectory analysis Trends |
title | Unveiling the economic potential of sports industry in China: A data driven analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20economic%20potential%20of%20sports%20industry%20in%20China:%20A%20data%20driven%20analysis&rft.jtitle=PloS%20one&rft.au=Liu,%20Haishan&rft.date=2024-09-12&rft.volume=19&rft.issue=9&rft.spage=e0310131&rft.pages=e0310131-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310131&rft_dat=%3Cgale_plos_%3EA808506424%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c572t-ff27ea7d2e691399620eecc82f8818411ee175246799d859b5d1c4bc5482bb7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3103840258&rft_id=info:pmid/39264965&rft_galeid=A808506424&rfr_iscdi=true |