Loading…
Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays
To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity w...
Saved in:
Published in: | PloS one 2024-12, Vol.19 (12), p.e0312866 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | e0312866 |
container_title | PloS one |
container_volume | 19 |
creator | Metwaly, Ahmed M El-Fakharany, Esmail M Alsfouk, Aisha A Ibrahim, Ibrahim M Elkaeed, Eslam B Eissa, Ibrahim H |
description | To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment. |
doi_str_mv | 10.1371/journal.pone.0312866 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3139182788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818813879</galeid><doaj_id>oai_doaj_org_article_e4b0229c61114fdabb544487aaac910a</doaj_id><sourcerecordid>A818813879</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYpeFf4DAEhICiZT4I4nNBZXyVWnRihb2Gk0cp3WV2sV2VvTCb8fdDahBe0A-2B4_847n1STJY5xNMC3x643tnYFusrNGTTKKCS-KO8kpFpSkBcno3aPzSfLA-02W5TRC95MTKgqSc5GfJr_mJqiVg6Aa5EPf7JFt0ddeOamCNgg8ArSzQZmAltPFMp3Zy5SgRbPYIW3WutbBujfonTaNNqsYCsqBDNoa_wp9eY-83vYdDHcwDZobdKWDs1HZw94_TO610Hn1aNjPku8fP3ybfU7PLz7NZ9PztGGMFGkrmBClYq1slZSZ5KTmGCRnuMgKgUXbloBbkWc1pVlJa94SSVjDBS1V7F_Qs-Tpje6us74arPMVxVRgTkrOIzG_IRoLm2rn9BbcvrKgq-uAdasKXNCyU5VidUaIkAXGmLUN1HXOGOMlAEiBM4hab4dqfb1VjYzuOehGouMXo9fVyl5VGBeYEYajwotBwdkfvfKh2movVdeBUbY_fJxlgrCc04g--we9vb2BWkHsQJvWxsLyIFpNOeYcU14ebJrcQsXVqK2WcdBaHeOjhJejhMgE9TOsoPe-mi8X_89eXI7Z50fsWkEX1t52_fUkjcEnx1b_9fjPhNPf1UT6bQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3139182788</pqid></control><display><type>article</type><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</creator><creatorcontrib>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</creatorcontrib><description>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0312866</identifier><identifier>PMID: 39625895</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Monophosphate - analogs & derivatives ; Adenosine Monophosphate - chemistry ; Adenosine Monophosphate - metabolism ; Adenosine Monophosphate - pharmacology ; Alanine - analogs & derivatives ; Alanine - chemistry ; Alanine - pharmacology ; Amino acids ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Binding ; Binding Sites ; Bioavailability ; Biology and life sciences ; Comparative analysis ; COVID-19 ; COVID-19 - metabolism ; COVID-19 - virology ; COVID-19 Drug Treatment ; Crystallization ; DNA-directed RNA polymerase ; Drug discovery ; Dynamic structural analysis ; Effectiveness ; Enzymes ; Evaluation ; Flavonoids ; Health aspects ; Humans ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Inhibitors ; Ligands ; Medicine and health sciences ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular weight ; Physical Sciences ; Principal components analysis ; Properties ; Protein Binding ; Proteins ; Quercetin ; Quercetin - analogs & derivatives ; Quercetin - chemistry ; Quercetin - metabolism ; Quercetin - pharmacology ; Research and Analysis Methods ; RNA ; RNA polymerase ; RNA-Dependent RNA Polymerase - antagonists & inhibitors ; RNA-Dependent RNA Polymerase - chemistry ; RNA-Dependent RNA Polymerase - metabolism ; RNA-directed RNA polymerase ; Safety margins ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - metabolism ; Severe acute respiratory syndrome coronavirus 2 ; Simulation ; Simulation methods ; Viral infections</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0312866</ispartof><rights>Copyright: © 2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Metwaly et al 2024 Metwaly et al</rights><rights>2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8566-1980 ; 0000-0003-4497-5013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3139182788/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3139182788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39625895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metwaly, Ahmed M</creatorcontrib><creatorcontrib>El-Fakharany, Esmail M</creatorcontrib><creatorcontrib>Alsfouk, Aisha A</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim M</creatorcontrib><creatorcontrib>Elkaeed, Eslam B</creatorcontrib><creatorcontrib>Eissa, Ibrahim H</creatorcontrib><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</description><subject>Adenosine Monophosphate - analogs & derivatives</subject><subject>Adenosine Monophosphate - chemistry</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Adenosine Monophosphate - pharmacology</subject><subject>Alanine - analogs & derivatives</subject><subject>Alanine - chemistry</subject><subject>Alanine - pharmacology</subject><subject>Amino acids</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bioavailability</subject><subject>Biology and life sciences</subject><subject>Comparative analysis</subject><subject>COVID-19</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Drug Treatment</subject><subject>Crystallization</subject><subject>DNA-directed RNA polymerase</subject><subject>Drug discovery</subject><subject>Dynamic structural analysis</subject><subject>Effectiveness</subject><subject>Enzymes</subject><subject>Evaluation</subject><subject>Flavonoids</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Inhibitors</subject><subject>Ligands</subject><subject>Medicine and health sciences</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular weight</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Quercetin - analogs & derivatives</subject><subject>Quercetin - chemistry</subject><subject>Quercetin - metabolism</subject><subject>Quercetin - pharmacology</subject><subject>Research and Analysis Methods</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA-Dependent RNA Polymerase - antagonists & inhibitors</subject><subject>RNA-Dependent RNA Polymerase - chemistry</subject><subject>RNA-Dependent RNA Polymerase - metabolism</subject><subject>RNA-directed RNA polymerase</subject><subject>Safety margins</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Viral infections</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2P0zAQhiMEYpeFf4DAEhICiZT4I4nNBZXyVWnRihb2Gk0cp3WV2sV2VvTCb8fdDahBe0A-2B4_847n1STJY5xNMC3x643tnYFusrNGTTKKCS-KO8kpFpSkBcno3aPzSfLA-02W5TRC95MTKgqSc5GfJr_mJqiVg6Aa5EPf7JFt0ddeOamCNgg8ArSzQZmAltPFMp3Zy5SgRbPYIW3WutbBujfonTaNNqsYCsqBDNoa_wp9eY-83vYdDHcwDZobdKWDs1HZw94_TO610Hn1aNjPku8fP3ybfU7PLz7NZ9PztGGMFGkrmBClYq1slZSZ5KTmGCRnuMgKgUXbloBbkWc1pVlJa94SSVjDBS1V7F_Qs-Tpje6us74arPMVxVRgTkrOIzG_IRoLm2rn9BbcvrKgq-uAdasKXNCyU5VidUaIkAXGmLUN1HXOGOMlAEiBM4hab4dqfb1VjYzuOehGouMXo9fVyl5VGBeYEYajwotBwdkfvfKh2movVdeBUbY_fJxlgrCc04g--we9vb2BWkHsQJvWxsLyIFpNOeYcU14ebJrcQsXVqK2WcdBaHeOjhJejhMgE9TOsoPe-mi8X_89eXI7Z50fsWkEX1t52_fUkjcEnx1b_9fjPhNPf1UT6bQ</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Metwaly, Ahmed M</creator><creator>El-Fakharany, Esmail M</creator><creator>Alsfouk, Aisha A</creator><creator>Ibrahim, Ibrahim M</creator><creator>Elkaeed, Eslam B</creator><creator>Eissa, Ibrahim H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8566-1980</orcidid><orcidid>https://orcid.org/0000-0003-4497-5013</orcidid></search><sort><creationdate>20241203</creationdate><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><author>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Monophosphate - analogs & derivatives</topic><topic>Adenosine Monophosphate - chemistry</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Adenosine Monophosphate - pharmacology</topic><topic>Alanine - analogs & derivatives</topic><topic>Alanine - chemistry</topic><topic>Alanine - pharmacology</topic><topic>Amino acids</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bioavailability</topic><topic>Biology and life sciences</topic><topic>Comparative analysis</topic><topic>COVID-19</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Drug Treatment</topic><topic>Crystallization</topic><topic>DNA-directed RNA polymerase</topic><topic>Drug discovery</topic><topic>Dynamic structural analysis</topic><topic>Effectiveness</topic><topic>Enzymes</topic><topic>Evaluation</topic><topic>Flavonoids</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Inhibitors</topic><topic>Ligands</topic><topic>Medicine and health sciences</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular weight</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Quercetin - analogs & derivatives</topic><topic>Quercetin - chemistry</topic><topic>Quercetin - metabolism</topic><topic>Quercetin - pharmacology</topic><topic>Research and Analysis Methods</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA-Dependent RNA Polymerase - antagonists & inhibitors</topic><topic>RNA-Dependent RNA Polymerase - chemistry</topic><topic>RNA-Dependent RNA Polymerase - metabolism</topic><topic>RNA-directed RNA polymerase</topic><topic>Safety margins</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metwaly, Ahmed M</creatorcontrib><creatorcontrib>El-Fakharany, Esmail M</creatorcontrib><creatorcontrib>Alsfouk, Aisha A</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim M</creatorcontrib><creatorcontrib>Elkaeed, Eslam B</creatorcontrib><creatorcontrib>Eissa, Ibrahim H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metwaly, Ahmed M</au><au>El-Fakharany, Esmail M</au><au>Alsfouk, Aisha A</au><au>Ibrahim, Ibrahim M</au><au>Elkaeed, Eslam B</au><au>Eissa, Ibrahim H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0312866</spage><pages>e0312866-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39625895</pmid><doi>10.1371/journal.pone.0312866</doi><tpages>e0312866</tpages><orcidid>https://orcid.org/0000-0001-8566-1980</orcidid><orcidid>https://orcid.org/0000-0003-4497-5013</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0312866 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3139182788 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Coronavirus Research Database |
subjects | Adenosine Monophosphate - analogs & derivatives Adenosine Monophosphate - chemistry Adenosine Monophosphate - metabolism Adenosine Monophosphate - pharmacology Alanine - analogs & derivatives Alanine - chemistry Alanine - pharmacology Amino acids Antiviral Agents - chemistry Antiviral Agents - pharmacology Binding Binding Sites Bioavailability Biology and life sciences Comparative analysis COVID-19 COVID-19 - metabolism COVID-19 - virology COVID-19 Drug Treatment Crystallization DNA-directed RNA polymerase Drug discovery Dynamic structural analysis Effectiveness Enzymes Evaluation Flavonoids Health aspects Humans Hydrogen Hydrogen bonding Hydrogen bonds Inhibitors Ligands Medicine and health sciences Molecular docking Molecular Docking Simulation Molecular dynamics Molecular Dynamics Simulation Molecular weight Physical Sciences Principal components analysis Properties Protein Binding Proteins Quercetin Quercetin - analogs & derivatives Quercetin - chemistry Quercetin - metabolism Quercetin - pharmacology Research and Analysis Methods RNA RNA polymerase RNA-Dependent RNA Polymerase - antagonists & inhibitors RNA-Dependent RNA Polymerase - chemistry RNA-Dependent RNA Polymerase - metabolism RNA-directed RNA polymerase Safety margins SARS-CoV-2 - drug effects SARS-CoV-2 - metabolism Severe acute respiratory syndrome coronavirus 2 Simulation Simulation methods Viral infections |
title | Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20study%20of%20Quercetin%20as%20a%20potent%20SARS-CoV-2%20RdRp%20inhibitor:%20Binding%20interactions,%20MD%20simulations,%20and%20In%20vitro%20assays&rft.jtitle=PloS%20one&rft.au=Metwaly,%20Ahmed%20M&rft.date=2024-12-03&rft.volume=19&rft.issue=12&rft.spage=e0312866&rft.pages=e0312866-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0312866&rft_dat=%3Cgale_plos_%3EA818813879%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3139182788&rft_id=info:pmid/39625895&rft_galeid=A818813879&rfr_iscdi=true |