Loading…

Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays

To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity w...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-12, Vol.19 (12), p.e0312866
Main Authors: Metwaly, Ahmed M, El-Fakharany, Esmail M, Alsfouk, Aisha A, Ibrahim, Ibrahim M, Elkaeed, Eslam B, Eissa, Ibrahim H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page e0312866
container_title PloS one
container_volume 19
creator Metwaly, Ahmed M
El-Fakharany, Esmail M
Alsfouk, Aisha A
Ibrahim, Ibrahim M
Elkaeed, Eslam B
Eissa, Ibrahim H
description To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.
doi_str_mv 10.1371/journal.pone.0312866
format article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3139182788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818813879</galeid><doaj_id>oai_doaj_org_article_e4b0229c61114fdabb544487aaac910a</doaj_id><sourcerecordid>A818813879</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093</originalsourceid><addsrcrecordid>eNqNkk2P0zAQhiMEYpeFf4DAEhICiZT4I4nNBZXyVWnRihb2Gk0cp3WV2sV2VvTCb8fdDahBe0A-2B4_847n1STJY5xNMC3x643tnYFusrNGTTKKCS-KO8kpFpSkBcno3aPzSfLA-02W5TRC95MTKgqSc5GfJr_mJqiVg6Aa5EPf7JFt0ddeOamCNgg8ArSzQZmAltPFMp3Zy5SgRbPYIW3WutbBujfonTaNNqsYCsqBDNoa_wp9eY-83vYdDHcwDZobdKWDs1HZw94_TO610Hn1aNjPku8fP3ybfU7PLz7NZ9PztGGMFGkrmBClYq1slZSZ5KTmGCRnuMgKgUXbloBbkWc1pVlJa94SSVjDBS1V7F_Qs-Tpje6us74arPMVxVRgTkrOIzG_IRoLm2rn9BbcvrKgq-uAdasKXNCyU5VidUaIkAXGmLUN1HXOGOMlAEiBM4hab4dqfb1VjYzuOehGouMXo9fVyl5VGBeYEYajwotBwdkfvfKh2movVdeBUbY_fJxlgrCc04g--we9vb2BWkHsQJvWxsLyIFpNOeYcU14ebJrcQsXVqK2WcdBaHeOjhJejhMgE9TOsoPe-mi8X_89eXI7Z50fsWkEX1t52_fUkjcEnx1b_9fjPhNPf1UT6bQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3139182788</pqid></control><display><type>article</type><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</creator><creatorcontrib>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</creatorcontrib><description>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0312866</identifier><identifier>PMID: 39625895</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine Monophosphate - analogs &amp; derivatives ; Adenosine Monophosphate - chemistry ; Adenosine Monophosphate - metabolism ; Adenosine Monophosphate - pharmacology ; Alanine - analogs &amp; derivatives ; Alanine - chemistry ; Alanine - pharmacology ; Amino acids ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Binding ; Binding Sites ; Bioavailability ; Biology and life sciences ; Comparative analysis ; COVID-19 ; COVID-19 - metabolism ; COVID-19 - virology ; COVID-19 Drug Treatment ; Crystallization ; DNA-directed RNA polymerase ; Drug discovery ; Dynamic structural analysis ; Effectiveness ; Enzymes ; Evaluation ; Flavonoids ; Health aspects ; Humans ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Inhibitors ; Ligands ; Medicine and health sciences ; Molecular docking ; Molecular Docking Simulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular weight ; Physical Sciences ; Principal components analysis ; Properties ; Protein Binding ; Proteins ; Quercetin ; Quercetin - analogs &amp; derivatives ; Quercetin - chemistry ; Quercetin - metabolism ; Quercetin - pharmacology ; Research and Analysis Methods ; RNA ; RNA polymerase ; RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors ; RNA-Dependent RNA Polymerase - chemistry ; RNA-Dependent RNA Polymerase - metabolism ; RNA-directed RNA polymerase ; Safety margins ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - metabolism ; Severe acute respiratory syndrome coronavirus 2 ; Simulation ; Simulation methods ; Viral infections</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0312866</ispartof><rights>Copyright: © 2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Metwaly et al 2024 Metwaly et al</rights><rights>2024 Metwaly et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8566-1980 ; 0000-0003-4497-5013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3139182788/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3139182788?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39625895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metwaly, Ahmed M</creatorcontrib><creatorcontrib>El-Fakharany, Esmail M</creatorcontrib><creatorcontrib>Alsfouk, Aisha A</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim M</creatorcontrib><creatorcontrib>Elkaeed, Eslam B</creatorcontrib><creatorcontrib>Eissa, Ibrahim H</creatorcontrib><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</description><subject>Adenosine Monophosphate - analogs &amp; derivatives</subject><subject>Adenosine Monophosphate - chemistry</subject><subject>Adenosine Monophosphate - metabolism</subject><subject>Adenosine Monophosphate - pharmacology</subject><subject>Alanine - analogs &amp; derivatives</subject><subject>Alanine - chemistry</subject><subject>Alanine - pharmacology</subject><subject>Amino acids</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Binding</subject><subject>Binding Sites</subject><subject>Bioavailability</subject><subject>Biology and life sciences</subject><subject>Comparative analysis</subject><subject>COVID-19</subject><subject>COVID-19 - metabolism</subject><subject>COVID-19 - virology</subject><subject>COVID-19 Drug Treatment</subject><subject>Crystallization</subject><subject>DNA-directed RNA polymerase</subject><subject>Drug discovery</subject><subject>Dynamic structural analysis</subject><subject>Effectiveness</subject><subject>Enzymes</subject><subject>Evaluation</subject><subject>Flavonoids</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Inhibitors</subject><subject>Ligands</subject><subject>Medicine and health sciences</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular weight</subject><subject>Physical Sciences</subject><subject>Principal components analysis</subject><subject>Properties</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Quercetin - analogs &amp; derivatives</subject><subject>Quercetin - chemistry</subject><subject>Quercetin - metabolism</subject><subject>Quercetin - pharmacology</subject><subject>Research and Analysis Methods</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors</subject><subject>RNA-Dependent RNA Polymerase - chemistry</subject><subject>RNA-Dependent RNA Polymerase - metabolism</subject><subject>RNA-directed RNA polymerase</subject><subject>Safety margins</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - metabolism</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Viral infections</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2P0zAQhiMEYpeFf4DAEhICiZT4I4nNBZXyVWnRihb2Gk0cp3WV2sV2VvTCb8fdDahBe0A-2B4_847n1STJY5xNMC3x643tnYFusrNGTTKKCS-KO8kpFpSkBcno3aPzSfLA-02W5TRC95MTKgqSc5GfJr_mJqiVg6Aa5EPf7JFt0ddeOamCNgg8ArSzQZmAltPFMp3Zy5SgRbPYIW3WutbBujfonTaNNqsYCsqBDNoa_wp9eY-83vYdDHcwDZobdKWDs1HZw94_TO610Hn1aNjPku8fP3ybfU7PLz7NZ9PztGGMFGkrmBClYq1slZSZ5KTmGCRnuMgKgUXbloBbkWc1pVlJa94SSVjDBS1V7F_Qs-Tpje6us74arPMVxVRgTkrOIzG_IRoLm2rn9BbcvrKgq-uAdasKXNCyU5VidUaIkAXGmLUN1HXOGOMlAEiBM4hab4dqfb1VjYzuOehGouMXo9fVyl5VGBeYEYajwotBwdkfvfKh2movVdeBUbY_fJxlgrCc04g--we9vb2BWkHsQJvWxsLyIFpNOeYcU14ebJrcQsXVqK2WcdBaHeOjhJejhMgE9TOsoPe-mi8X_89eXI7Z50fsWkEX1t52_fUkjcEnx1b_9fjPhNPf1UT6bQ</recordid><startdate>20241203</startdate><enddate>20241203</enddate><creator>Metwaly, Ahmed M</creator><creator>El-Fakharany, Esmail M</creator><creator>Alsfouk, Aisha A</creator><creator>Ibrahim, Ibrahim M</creator><creator>Elkaeed, Eslam B</creator><creator>Eissa, Ibrahim H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8566-1980</orcidid><orcidid>https://orcid.org/0000-0003-4497-5013</orcidid></search><sort><creationdate>20241203</creationdate><title>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</title><author>Metwaly, Ahmed M ; El-Fakharany, Esmail M ; Alsfouk, Aisha A ; Ibrahim, Ibrahim M ; Elkaeed, Eslam B ; Eissa, Ibrahim H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Monophosphate - analogs &amp; derivatives</topic><topic>Adenosine Monophosphate - chemistry</topic><topic>Adenosine Monophosphate - metabolism</topic><topic>Adenosine Monophosphate - pharmacology</topic><topic>Alanine - analogs &amp; derivatives</topic><topic>Alanine - chemistry</topic><topic>Alanine - pharmacology</topic><topic>Amino acids</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Binding</topic><topic>Binding Sites</topic><topic>Bioavailability</topic><topic>Biology and life sciences</topic><topic>Comparative analysis</topic><topic>COVID-19</topic><topic>COVID-19 - metabolism</topic><topic>COVID-19 - virology</topic><topic>COVID-19 Drug Treatment</topic><topic>Crystallization</topic><topic>DNA-directed RNA polymerase</topic><topic>Drug discovery</topic><topic>Dynamic structural analysis</topic><topic>Effectiveness</topic><topic>Enzymes</topic><topic>Evaluation</topic><topic>Flavonoids</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Inhibitors</topic><topic>Ligands</topic><topic>Medicine and health sciences</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular weight</topic><topic>Physical Sciences</topic><topic>Principal components analysis</topic><topic>Properties</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Quercetin - analogs &amp; derivatives</topic><topic>Quercetin - chemistry</topic><topic>Quercetin - metabolism</topic><topic>Quercetin - pharmacology</topic><topic>Research and Analysis Methods</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA-Dependent RNA Polymerase - antagonists &amp; inhibitors</topic><topic>RNA-Dependent RNA Polymerase - chemistry</topic><topic>RNA-Dependent RNA Polymerase - metabolism</topic><topic>RNA-directed RNA polymerase</topic><topic>Safety margins</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - metabolism</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Viral infections</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metwaly, Ahmed M</creatorcontrib><creatorcontrib>El-Fakharany, Esmail M</creatorcontrib><creatorcontrib>Alsfouk, Aisha A</creatorcontrib><creatorcontrib>Ibrahim, Ibrahim M</creatorcontrib><creatorcontrib>Elkaeed, Eslam B</creatorcontrib><creatorcontrib>Eissa, Ibrahim H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metwaly, Ahmed M</au><au>El-Fakharany, Esmail M</au><au>Alsfouk, Aisha A</au><au>Ibrahim, Ibrahim M</au><au>Elkaeed, Eslam B</au><au>Eissa, Ibrahim H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-03</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0312866</spage><pages>e0312866-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To find an effective inhibitor for SARS-CoV-2, Quercetin's chemical structure was compared to nine ligands associated with nine key SARS-CoV-2 proteins. It was found that Quercetin closely resembles Remdesivir, the co-crystallized ligand of RNA-dependent RNA polymerase (RdRp). This similarity was confirmed through flexible alignment experiments and molecular docking studies, which showed that both Quercetin and Remdesivir bind similarly to the active site of RdRp. Molecular dynamics (MD) simulations over a 200 ns trajectory, analyzing various factors like RMSD, RG, RMSF, SASA, and hydrogen bonding were conducted. These simulations gave detailed insights into the binding interactions of Quercetin with RdRp compared to Remdesivir. Further analyses, including MM-GBSA, Protein-Ligand Interaction Fingerprints (ProLIF) and Profile PLIP studies, confirmed the stability of Quercetin's binding. Principal component analysis of trajectories (PCAT) provided insights into the coordinated movements within the systems studied. In vitro assays showed that Quercetin is highly effective in inhibiting RdRp, with an IC50 of 122.1 ±5.46 nM, which is better than Remdesivir's IC50 of 21.62 ±2.81 μM. Moreover, Quercetin showed greater efficacy against SARS-CoV-2 In vitro, with an IC50 of 1.149 μg/ml compared to Remdesivir's 9.54 μg/ml. The selectivity index (SI) values highlighted Quercetin's safety margin (SI: 791) over Remdesivir (SI: 6). In conclusion, our comprehensive study suggests that Quercetin is a promising candidate for further research as an inhibitor of SARS-CoV-2 RdRp, providing valuable insights for developing an effective anti-COVID-19 treatment.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39625895</pmid><doi>10.1371/journal.pone.0312866</doi><tpages>e0312866</tpages><orcidid>https://orcid.org/0000-0001-8566-1980</orcidid><orcidid>https://orcid.org/0000-0003-4497-5013</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2024-12, Vol.19 (12), p.e0312866
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_3139182788
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Coronavirus Research Database
subjects Adenosine Monophosphate - analogs & derivatives
Adenosine Monophosphate - chemistry
Adenosine Monophosphate - metabolism
Adenosine Monophosphate - pharmacology
Alanine - analogs & derivatives
Alanine - chemistry
Alanine - pharmacology
Amino acids
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Binding
Binding Sites
Bioavailability
Biology and life sciences
Comparative analysis
COVID-19
COVID-19 - metabolism
COVID-19 - virology
COVID-19 Drug Treatment
Crystallization
DNA-directed RNA polymerase
Drug discovery
Dynamic structural analysis
Effectiveness
Enzymes
Evaluation
Flavonoids
Health aspects
Humans
Hydrogen
Hydrogen bonding
Hydrogen bonds
Inhibitors
Ligands
Medicine and health sciences
Molecular docking
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Molecular weight
Physical Sciences
Principal components analysis
Properties
Protein Binding
Proteins
Quercetin
Quercetin - analogs & derivatives
Quercetin - chemistry
Quercetin - metabolism
Quercetin - pharmacology
Research and Analysis Methods
RNA
RNA polymerase
RNA-Dependent RNA Polymerase - antagonists & inhibitors
RNA-Dependent RNA Polymerase - chemistry
RNA-Dependent RNA Polymerase - metabolism
RNA-directed RNA polymerase
Safety margins
SARS-CoV-2 - drug effects
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Simulation
Simulation methods
Viral infections
title Integrated study of Quercetin as a potent SARS-CoV-2 RdRp inhibitor: Binding interactions, MD simulations, and In vitro assays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A01%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20study%20of%20Quercetin%20as%20a%20potent%20SARS-CoV-2%20RdRp%20inhibitor:%20Binding%20interactions,%20MD%20simulations,%20and%20In%20vitro%20assays&rft.jtitle=PloS%20one&rft.au=Metwaly,%20Ahmed%20M&rft.date=2024-12-03&rft.volume=19&rft.issue=12&rft.spage=e0312866&rft.pages=e0312866-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0312866&rft_dat=%3Cgale_plos_%3EA818813879%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4426-f94997e4fcfecc0c82b81ac841606919ff7a1f950b33073b8f2c24d8937e62093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3139182788&rft_id=info:pmid/39625895&rft_galeid=A818813879&rfr_iscdi=true