Loading…

Rapid high-throughput isolation and purification of chicken myoblasts based on deterministic lateral displacement microfluidic chips

Myoblasts are defined as stem cells containing skeletal muscle cell precursors. However, there are some challenges associated with the purification of myoblast samples, including long culture times and ease of bacterial contamination. In this study, we propose a microfluidic myoblast cell enrichment...

Full description

Saved in:
Bibliographic Details
Published in:PloS one 2024-12, Vol.19 (12), p.e0301309
Main Authors: Gu, Lihong, Liu, Hongju, Wang, Long, Fan, Haokai, Zheng, Xinli, Xu, Tieshan, Jiang, Qicheng, Zhou, Teng, Shi, Liuyong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Myoblasts are defined as stem cells containing skeletal muscle cell precursors. However, there are some challenges associated with the purification of myoblast samples, including long culture times and ease of bacterial contamination. In this study, we propose a microfluidic myoblast cell enrichment and purification platform based on the principle of deterministic lateral displacement (DLD). To achieve this, we designed a DLD chip with three outlets and tested it on 11-day-old (E11) Wenchang chicken pectoral muscle tissue. A cell suspension was prepared using the collagenase method, pretreated, and then passed into the designed DLD chip for myoblast enrichment and purification. In this study, the number of myoblasts and the diameter of myoblasts increased slowly before E9, and the diameter of myofibers decreased and the number of myofibers increased rapidly after E9. The period when the muscle fibers are most numerous is on the E12, and the period when the diameter of the muscle fibers begins to increase again after reaching its lowest point is also on the E12. After E12, the diameter of the muscle fibers increased and the number of muscle fibers decreased. At E12, myoblasts clustered and fused, and the proliferation of myoblasts was greatly reduced. E12 is both intact myoblasts and the most vigorous proliferation period, so the best time to determine isolation is E12. We attained a myoblast cell recovery rate of 80%, a target outlet collection purity of 99%, and a chip throughput of 50 μ m/min. In this paper, we innovate chips design according to specific geometries and functions for Wenchang chicken pectoral muscle tissue, so as to optimize the isolation and purification process of myoblasts. This study provides a novel and effective method for the isolation and purification of skeletal muscle myoblasts.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0301309