Loading…
Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making
Urban resilience is crucial for sustainable development and resident safety in a changing environment with potential risks. Given China's rapid urbanization, constructing resilient cities that anticipate risks, mitigate disaster impacts, and swiftly recover from crises is paramount. This study...
Saved in:
Published in: | PloS one 2024-12, Vol.19 (12), p.e0310554 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | e0310554 |
container_title | PloS one |
container_volume | 19 |
creator | Liu, Jian He, Ye Feng, Rui Lyu, Bin |
description | Urban resilience is crucial for sustainable development and resident safety in a changing environment with potential risks. Given China's rapid urbanization, constructing resilient cities that anticipate risks, mitigate disaster impacts, and swiftly recover from crises is paramount. This study explores a key area of urban construction: building safety. We apply the dynamic nonhomogeneous grey model (DNMGM(1,1)) to simulate the building death toll and use a traffic accident death toll dataset for validation. Unlike traditional models, DNMGM(1,1) can integrate and respond to new data points in real-time, thus producing accurate predictions when facing new trends or fluctuations in the data. The research findings indicate that with a dataset size of 6, the DNMGM(1,1) model achieves average relative errors of 9.26% and 7.29% when predicting fatalities in both construction and traffic accidents. This performance demonstrates superior prediction accuracy compared to traditional grey models. This method uses prediction models to support the construction of elastic cities, providing strong data support and decision-making tools for planning and resource allocation. Specific interventions and policy frameworks based on this study by urban planners and policymakers can promote resilient urban development. Future efforts should strive to enhance its robustness and adaptability in different fields. |
doi_str_mv | 10.1371/journal.pone.0310554 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3141380433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A819044076</galeid><doaj_id>oai_doaj_org_article_1de66a6dc88f49a0b72e23ac8bf590ec</doaj_id><sourcerecordid>A819044076</sourcerecordid><originalsourceid>FETCH-LOGICAL-d4424-e0cd1c04094b2e1d7bd8c24e267a6e6ade1c89e63e9b73bacf2fcd94457ba6703</originalsourceid><addsrcrecordid>eNqNks-O0zAQxiMEYpfCGyCwhITgkGLHjpNwQaWCpdJKK_HvGk3sSeuS2F07qehD8M64uwW1aA_IB1vj33wz_jxJ8pTRKeMFe7N2o7fQTTfO4pRyRvNc3EvOWcWzVGaU3z86nyWPQlhTmvNSyofJGa8klxXLz5Nf70fTaWOXJECLnoDVpHceicdgOoN2IMoMBgMxlsxXxsJbMiPWbbEjsNl4B2pFxrAXAKJ3Fnqj4rVdud4t0aIbA7nwsIuiOqa0zhMNA6Tamy1aolGZYJxNe_gRNR4nD1roAj457JPk28cPX-ef0suri8V8dplqITKRIlWaKSpoJZoMmS4aXapMYCYLkChBI1NlhZJj1RS8AdVmrdKVEHnRgCwonyTPb3U3nQv1wclQcyYYL6ngPBKLW0I7WNcbb3rwu9qBqW8Czi9r8INRHdZMo5QgtSrLVlRAmyLDjIMqmzavKKqo9e5QbWx61Cqa6qE7ET29sWZVL922Zix-nog9TZJXBwXvrkcMQ92boLDr4MbhfeMy57TK84i--Ae9-3kHagnxBca2LhZWe9F6VrIqFqWFjNT0DioujfGb49y1JsZPEl6fJERmwJ_DEsYQ6sWXz__PXn0_ZV8esSuEblgF141DHJ1wCj47tvqvx38Gnv8GV8ACpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3141380433</pqid></control><display><type>article</type><title>Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><source>PAIS Index</source><source>Coronavirus Research Database</source><creator>Liu, Jian ; He, Ye ; Feng, Rui ; Lyu, Bin</creator><creatorcontrib>Liu, Jian ; He, Ye ; Feng, Rui ; Lyu, Bin</creatorcontrib><description>Urban resilience is crucial for sustainable development and resident safety in a changing environment with potential risks. Given China's rapid urbanization, constructing resilient cities that anticipate risks, mitigate disaster impacts, and swiftly recover from crises is paramount. This study explores a key area of urban construction: building safety. We apply the dynamic nonhomogeneous grey model (DNMGM(1,1)) to simulate the building death toll and use a traffic accident death toll dataset for validation. Unlike traditional models, DNMGM(1,1) can integrate and respond to new data points in real-time, thus producing accurate predictions when facing new trends or fluctuations in the data. The research findings indicate that with a dataset size of 6, the DNMGM(1,1) model achieves average relative errors of 9.26% and 7.29% when predicting fatalities in both construction and traffic accidents. This performance demonstrates superior prediction accuracy compared to traditional grey models. This method uses prediction models to support the construction of elastic cities, providing strong data support and decision-making tools for planning and resource allocation. Specific interventions and policy frameworks based on this study by urban planners and policymakers can promote resilient urban development. Future efforts should strive to enhance its robustness and adaptability in different fields.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0310554</identifier><identifier>PMID: 39636915</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accident prediction ; Accident prevention ; Accidents ; Accidents, Traffic - mortality ; Accidents, Traffic - prevention & control ; Accidents, Traffic - statistics & numerical data ; Accuracy ; Adaptability ; Casualties ; Changing environments ; China ; Cities ; City Planning - methods ; Computer and Information Sciences ; Construction ; Construction accidents & safety ; Construction industry ; Data ; Data points ; Datasets ; Death & dying ; Decision Making ; Disaster management ; Earth Sciences ; Emergency preparedness ; Engineering and Technology ; Environmental changes ; Errors ; Evaluation ; Fatalities ; Forecasts and trends ; Humans ; Medicine and Health Sciences ; Metabolism ; Methods ; Models, Theoretical ; Parameter estimation ; Physical Sciences ; Policy making ; Prediction models ; Real time ; Research and Analysis Methods ; Resilience ; Resource allocation ; Safety ; Safety and security measures ; Social Sciences ; Sustainable Development ; Sustainable urban development ; System theory ; Time series ; Traffic ; Traffic accidents ; Traffic accidents & safety ; Traffic safety ; Urban development ; Urban planning ; Urbanization</subject><ispartof>PloS one, 2024-12, Vol.19 (12), p.e0310554</ispartof><rights>Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 Liu et al 2024 Liu et al</rights><rights>2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0425-2611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3141380433?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3141380433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27866,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39636915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Lyu, Bin</creatorcontrib><title>Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Urban resilience is crucial for sustainable development and resident safety in a changing environment with potential risks. Given China's rapid urbanization, constructing resilient cities that anticipate risks, mitigate disaster impacts, and swiftly recover from crises is paramount. This study explores a key area of urban construction: building safety. We apply the dynamic nonhomogeneous grey model (DNMGM(1,1)) to simulate the building death toll and use a traffic accident death toll dataset for validation. Unlike traditional models, DNMGM(1,1) can integrate and respond to new data points in real-time, thus producing accurate predictions when facing new trends or fluctuations in the data. The research findings indicate that with a dataset size of 6, the DNMGM(1,1) model achieves average relative errors of 9.26% and 7.29% when predicting fatalities in both construction and traffic accidents. This performance demonstrates superior prediction accuracy compared to traditional grey models. This method uses prediction models to support the construction of elastic cities, providing strong data support and decision-making tools for planning and resource allocation. Specific interventions and policy frameworks based on this study by urban planners and policymakers can promote resilient urban development. Future efforts should strive to enhance its robustness and adaptability in different fields.</description><subject>Accident prediction</subject><subject>Accident prevention</subject><subject>Accidents</subject><subject>Accidents, Traffic - mortality</subject><subject>Accidents, Traffic - prevention & control</subject><subject>Accidents, Traffic - statistics & numerical data</subject><subject>Accuracy</subject><subject>Adaptability</subject><subject>Casualties</subject><subject>Changing environments</subject><subject>China</subject><subject>Cities</subject><subject>City Planning - methods</subject><subject>Computer and Information Sciences</subject><subject>Construction</subject><subject>Construction accidents & safety</subject><subject>Construction industry</subject><subject>Data</subject><subject>Data points</subject><subject>Datasets</subject><subject>Death & dying</subject><subject>Decision Making</subject><subject>Disaster management</subject><subject>Earth Sciences</subject><subject>Emergency preparedness</subject><subject>Engineering and Technology</subject><subject>Environmental changes</subject><subject>Errors</subject><subject>Evaluation</subject><subject>Fatalities</subject><subject>Forecasts and trends</subject><subject>Humans</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Parameter estimation</subject><subject>Physical Sciences</subject><subject>Policy making</subject><subject>Prediction models</subject><subject>Real time</subject><subject>Research and Analysis Methods</subject><subject>Resilience</subject><subject>Resource allocation</subject><subject>Safety</subject><subject>Safety and security measures</subject><subject>Social Sciences</subject><subject>Sustainable Development</subject><subject>Sustainable urban development</subject><subject>System theory</subject><subject>Time series</subject><subject>Traffic</subject><subject>Traffic accidents</subject><subject>Traffic accidents & safety</subject><subject>Traffic safety</subject><subject>Urban development</subject><subject>Urban planning</subject><subject>Urbanization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNks-O0zAQxiMEYpfCGyCwhITgkGLHjpNwQaWCpdJKK_HvGk3sSeuS2F07qehD8M64uwW1aA_IB1vj33wz_jxJ8pTRKeMFe7N2o7fQTTfO4pRyRvNc3EvOWcWzVGaU3z86nyWPQlhTmvNSyofJGa8klxXLz5Nf70fTaWOXJECLnoDVpHceicdgOoN2IMoMBgMxlsxXxsJbMiPWbbEjsNl4B2pFxrAXAKJ3Fnqj4rVdud4t0aIbA7nwsIuiOqa0zhMNA6Tamy1aolGZYJxNe_gRNR4nD1roAj457JPk28cPX-ef0suri8V8dplqITKRIlWaKSpoJZoMmS4aXapMYCYLkChBI1NlhZJj1RS8AdVmrdKVEHnRgCwonyTPb3U3nQv1wclQcyYYL6ngPBKLW0I7WNcbb3rwu9qBqW8Czi9r8INRHdZMo5QgtSrLVlRAmyLDjIMqmzavKKqo9e5QbWx61Cqa6qE7ET29sWZVL922Zix-nog9TZJXBwXvrkcMQ92boLDr4MbhfeMy57TK84i--Ae9-3kHagnxBca2LhZWe9F6VrIqFqWFjNT0DioujfGb49y1JsZPEl6fJERmwJ_DEsYQ6sWXz__PXn0_ZV8esSuEblgF141DHJ1wCj47tvqvx38Gnv8GV8ACpQ</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Liu, Jian</creator><creator>He, Ye</creator><creator>Feng, Rui</creator><creator>Lyu, Bin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7TQ</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DHY</scope><scope>DON</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0425-2611</orcidid></search><sort><creationdate>20241205</creationdate><title>Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making</title><author>Liu, Jian ; He, Ye ; Feng, Rui ; Lyu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d4424-e0cd1c04094b2e1d7bd8c24e267a6e6ade1c89e63e9b73bacf2fcd94457ba6703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accident prediction</topic><topic>Accident prevention</topic><topic>Accidents</topic><topic>Accidents, Traffic - mortality</topic><topic>Accidents, Traffic - prevention & control</topic><topic>Accidents, Traffic - statistics & numerical data</topic><topic>Accuracy</topic><topic>Adaptability</topic><topic>Casualties</topic><topic>Changing environments</topic><topic>China</topic><topic>Cities</topic><topic>City Planning - methods</topic><topic>Computer and Information Sciences</topic><topic>Construction</topic><topic>Construction accidents & safety</topic><topic>Construction industry</topic><topic>Data</topic><topic>Data points</topic><topic>Datasets</topic><topic>Death & dying</topic><topic>Decision Making</topic><topic>Disaster management</topic><topic>Earth Sciences</topic><topic>Emergency preparedness</topic><topic>Engineering and Technology</topic><topic>Environmental changes</topic><topic>Errors</topic><topic>Evaluation</topic><topic>Fatalities</topic><topic>Forecasts and trends</topic><topic>Humans</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Parameter estimation</topic><topic>Physical Sciences</topic><topic>Policy making</topic><topic>Prediction models</topic><topic>Real time</topic><topic>Research and Analysis Methods</topic><topic>Resilience</topic><topic>Resource allocation</topic><topic>Safety</topic><topic>Safety and security measures</topic><topic>Social Sciences</topic><topic>Sustainable Development</topic><topic>Sustainable urban development</topic><topic>System theory</topic><topic>Time series</topic><topic>Traffic</topic><topic>Traffic accidents</topic><topic>Traffic accidents & safety</topic><topic>Traffic safety</topic><topic>Urban development</topic><topic>Urban planning</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jian</creatorcontrib><creatorcontrib>He, Ye</creatorcontrib><creatorcontrib>Feng, Rui</creatorcontrib><creatorcontrib>Lyu, Bin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Science In Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>PAIS Index</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jian</au><au>He, Ye</au><au>Feng, Rui</au><au>Lyu, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2024-12-05</date><risdate>2024</risdate><volume>19</volume><issue>12</issue><spage>e0310554</spage><pages>e0310554-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Urban resilience is crucial for sustainable development and resident safety in a changing environment with potential risks. Given China's rapid urbanization, constructing resilient cities that anticipate risks, mitigate disaster impacts, and swiftly recover from crises is paramount. This study explores a key area of urban construction: building safety. We apply the dynamic nonhomogeneous grey model (DNMGM(1,1)) to simulate the building death toll and use a traffic accident death toll dataset for validation. Unlike traditional models, DNMGM(1,1) can integrate and respond to new data points in real-time, thus producing accurate predictions when facing new trends or fluctuations in the data. The research findings indicate that with a dataset size of 6, the DNMGM(1,1) model achieves average relative errors of 9.26% and 7.29% when predicting fatalities in both construction and traffic accidents. This performance demonstrates superior prediction accuracy compared to traditional grey models. This method uses prediction models to support the construction of elastic cities, providing strong data support and decision-making tools for planning and resource allocation. Specific interventions and policy frameworks based on this study by urban planners and policymakers can promote resilient urban development. Future efforts should strive to enhance its robustness and adaptability in different fields.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39636915</pmid><doi>10.1371/journal.pone.0310554</doi><tpages>e0310554</tpages><orcidid>https://orcid.org/0000-0003-0425-2611</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2024-12, Vol.19 (12), p.e0310554 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3141380433 |
source | PubMed Central Free; Publicly Available Content Database; PAIS Index; Coronavirus Research Database |
subjects | Accident prediction Accident prevention Accidents Accidents, Traffic - mortality Accidents, Traffic - prevention & control Accidents, Traffic - statistics & numerical data Accuracy Adaptability Casualties Changing environments China Cities City Planning - methods Computer and Information Sciences Construction Construction accidents & safety Construction industry Data Data points Datasets Death & dying Decision Making Disaster management Earth Sciences Emergency preparedness Engineering and Technology Environmental changes Errors Evaluation Fatalities Forecasts and trends Humans Medicine and Health Sciences Metabolism Methods Models, Theoretical Parameter estimation Physical Sciences Policy making Prediction models Real time Research and Analysis Methods Resilience Resource allocation Safety Safety and security measures Social Sciences Sustainable Development Sustainable urban development System theory Time series Traffic Traffic accidents Traffic accidents & safety Traffic safety Urban development Urban planning Urbanization |
title | Building safer and more resilient cities in China: A novel approach using a dynamic nonhomogeneous Gray model for data-driven decision-making |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20safer%20and%20more%20resilient%20cities%20in%20China:%20A%20novel%20approach%20using%20a%20dynamic%20nonhomogeneous%20Gray%20model%20for%20data-driven%20decision-making&rft.jtitle=PloS%20one&rft.au=Liu,%20Jian&rft.date=2024-12-05&rft.volume=19&rft.issue=12&rft.spage=e0310554&rft.pages=e0310554-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0310554&rft_dat=%3Cgale_plos_%3EA819044076%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d4424-e0cd1c04094b2e1d7bd8c24e267a6e6ade1c89e63e9b73bacf2fcd94457ba6703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3141380433&rft_id=info:pmid/39636915&rft_galeid=A819044076&rfr_iscdi=true |