Loading…
UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation
Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy an...
Saved in:
Published in: | PloS one 2025-01, Vol.20 (1), p.e0314485 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4875-36891e401991fda3f975b13776fc9e04d0eba1cadf8f672d398e80a32e19b0303 |
container_end_page | |
container_issue | 1 |
container_start_page | e0314485 |
container_title | PloS one |
container_volume | 20 |
creator | Dan, Yuanhong Li, Jinyan Jin, Yu Ji, Yong Wang, Zhihao Cheng, Dong |
description | Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets. In addition, we design an anchor-free frame-aware feature modulation mechanism to reduce computation and generate high-quality anchors while optimizing the target frame refinement computation to improve the adaptability to target deformation motion. Comparison experiments with several popular algorithms on UAV tracking datasets, such as UAV123@10fps, UAV20L, and DTB70, show that the algorithm balances speed and accuracy. In order to verify the reliability of the algorithm, we built a physical experimental environment on the Jetson Orin Nano platform. We realized a real-time processing speed of 30 frames per second. |
doi_str_mv | 10.1371/journal.pone.0314485 |
format | article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_3156421424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823804736</galeid><doaj_id>oai_doaj_org_article_fc237bc070734018a262b02a39e5c67c</doaj_id><sourcerecordid>A823804736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-36891e401991fda3f975b13776fc9e04d0eba1cadf8f672d398e80a32e19b0303</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPno55UMix8DCwvq7m04TU86WdNmTFLRf2_qdJep7IWUtCF53tPznuQkyXNK1pSX9N2NHd0AZr23A64Jp1lW5Q-SU1pztioY4Q-P5ifJE-9vCMl5VRSPkxNeV4zQmpwm7mpznQZwHYY0OJDf9dClPYadbdMGPLapHdLO2AZMqhDC6DDVQ8CIBh23YGjjkDvrVspBj_GNmO7RSdyH8UjU23Y0MGmeJo8UGI_P5u9ZcvXxw7fzz6uLy0_b883FSmZVma94UdUUs5hmTVULXNVl3kTnZaFkjSRrCTZAJbSqUkXJ2ugJKwKcIa0bwgk_S14e4u6N9WIulxec5kXGaMaySGwPRGvhRuyd7sH9Fha0-LtgXSfABS0NCiUZLxtJSlLymFMFrGANYcBrzGVRyhjr_fy3semxlTjEcppF0OXOoHeisz8FpWU0lU3ZvJkjOPtjRB9Er71EY2BAOx4Srwgp6GTt1T_o_fZmqoPoQA_KTic8BRWbivGKZCUvIrW-h4pPi72W8XIpHdcXgrcLQWQC_godjN6L7dcv_89eXi_Z10fsDsGEnbdmnO6MX4LZAZTOeu9Q3VWZEjH1xm01xNQbYu6NKHtxfEJ3ottm4H8A5sQJOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156421424</pqid></control><display><type>article</type><title>UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Dan, Yuanhong ; Li, Jinyan ; Jin, Yu ; Ji, Yong ; Wang, Zhihao ; Cheng, Dong</creator><creatorcontrib>Dan, Yuanhong ; Li, Jinyan ; Jin, Yu ; Ji, Yong ; Wang, Zhihao ; Cheng, Dong</creatorcontrib><description>Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets. In addition, we design an anchor-free frame-aware feature modulation mechanism to reduce computation and generate high-quality anchors while optimizing the target frame refinement computation to improve the adaptability to target deformation motion. Comparison experiments with several popular algorithms on UAV tracking datasets, such as UAV123@10fps, UAV20L, and DTB70, show that the algorithm balances speed and accuracy. In order to verify the reliability of the algorithm, we built a physical experimental environment on the Jetson Orin Nano platform. We realized a real-time processing speed of 30 frames per second.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0314485</identifier><identifier>PMID: 39820190</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adaptability ; Algorithms ; Biology and Life Sciences ; Computation ; Computer and Information Sciences ; Deep Learning ; Deformation mechanisms ; Design ; Design optimization ; Drone aircraft ; Efficiency ; Field of view ; Fourier transforms ; Frame design ; Frames per second ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Localization ; Machine learning ; Methods ; Modulation ; Physical Sciences ; Real time ; Remote Sensing Technology - instrumentation ; Remote Sensing Technology - methods ; Research and Analysis Methods ; Robotics - methods ; Social Sciences ; Target recognition ; Tracking ; Tracking techniques ; Unmanned aerial vehicles ; Video data ; Video Recording - methods</subject><ispartof>PloS one, 2025-01, Vol.20 (1), p.e0314485</ispartof><rights>Copyright: © 2025 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2025 Public Library of Science</rights><rights>2025 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 Dan et al 2025 Dan et al</rights><rights>2025 Dan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4875-36891e401991fda3f975b13776fc9e04d0eba1cadf8f672d398e80a32e19b0303</cites><orcidid>0009-0000-3404-6558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3156421424/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3156421424?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39820190$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dan, Yuanhong</creatorcontrib><creatorcontrib>Li, Jinyan</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Cheng, Dong</creatorcontrib><title>UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets. In addition, we design an anchor-free frame-aware feature modulation mechanism to reduce computation and generate high-quality anchors while optimizing the target frame refinement computation to improve the adaptability to target deformation motion. Comparison experiments with several popular algorithms on UAV tracking datasets, such as UAV123@10fps, UAV20L, and DTB70, show that the algorithm balances speed and accuracy. In order to verify the reliability of the algorithm, we built a physical experimental environment on the Jetson Orin Nano platform. We realized a real-time processing speed of 30 frames per second.</description><subject>Accuracy</subject><subject>Adaptability</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computation</subject><subject>Computer and Information Sciences</subject><subject>Deep Learning</subject><subject>Deformation mechanisms</subject><subject>Design</subject><subject>Design optimization</subject><subject>Drone aircraft</subject><subject>Efficiency</subject><subject>Field of view</subject><subject>Fourier transforms</subject><subject>Frame design</subject><subject>Frames per second</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Modulation</subject><subject>Physical Sciences</subject><subject>Real time</subject><subject>Remote Sensing Technology - instrumentation</subject><subject>Remote Sensing Technology - methods</subject><subject>Research and Analysis Methods</subject><subject>Robotics - methods</subject><subject>Social Sciences</subject><subject>Target recognition</subject><subject>Tracking</subject><subject>Tracking techniques</subject><subject>Unmanned aerial vehicles</subject><subject>Video data</subject><subject>Video Recording - methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjPno55UMix8DCwvq7m04TU86WdNmTFLRf2_qdJep7IWUtCF53tPznuQkyXNK1pSX9N2NHd0AZr23A64Jp1lW5Q-SU1pztioY4Q-P5ifJE-9vCMl5VRSPkxNeV4zQmpwm7mpznQZwHYY0OJDf9dClPYadbdMGPLapHdLO2AZMqhDC6DDVQ8CIBh23YGjjkDvrVspBj_GNmO7RSdyH8UjU23Y0MGmeJo8UGI_P5u9ZcvXxw7fzz6uLy0_b883FSmZVma94UdUUs5hmTVULXNVl3kTnZaFkjSRrCTZAJbSqUkXJ2ugJKwKcIa0bwgk_S14e4u6N9WIulxec5kXGaMaySGwPRGvhRuyd7sH9Fha0-LtgXSfABS0NCiUZLxtJSlLymFMFrGANYcBrzGVRyhjr_fy3semxlTjEcppF0OXOoHeisz8FpWU0lU3ZvJkjOPtjRB9Er71EY2BAOx4Srwgp6GTt1T_o_fZmqoPoQA_KTic8BRWbivGKZCUvIrW-h4pPi72W8XIpHdcXgrcLQWQC_godjN6L7dcv_89eXi_Z10fsDsGEnbdmnO6MX4LZAZTOeu9Q3VWZEjH1xm01xNQbYu6NKHtxfEJ3ottm4H8A5sQJOA</recordid><startdate>20250116</startdate><enddate>20250116</enddate><creator>Dan, Yuanhong</creator><creator>Li, Jinyan</creator><creator>Jin, Yu</creator><creator>Ji, Yong</creator><creator>Wang, Zhihao</creator><creator>Cheng, Dong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-3404-6558</orcidid></search><sort><creationdate>20250116</creationdate><title>UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation</title><author>Dan, Yuanhong ; Li, Jinyan ; Jin, Yu ; Ji, Yong ; Wang, Zhihao ; Cheng, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-36891e401991fda3f975b13776fc9e04d0eba1cadf8f672d398e80a32e19b0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Adaptability</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computation</topic><topic>Computer and Information Sciences</topic><topic>Deep Learning</topic><topic>Deformation mechanisms</topic><topic>Design</topic><topic>Design optimization</topic><topic>Drone aircraft</topic><topic>Efficiency</topic><topic>Field of view</topic><topic>Fourier transforms</topic><topic>Frame design</topic><topic>Frames per second</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Modulation</topic><topic>Physical Sciences</topic><topic>Real time</topic><topic>Remote Sensing Technology - instrumentation</topic><topic>Remote Sensing Technology - methods</topic><topic>Research and Analysis Methods</topic><topic>Robotics - methods</topic><topic>Social Sciences</topic><topic>Target recognition</topic><topic>Tracking</topic><topic>Tracking techniques</topic><topic>Unmanned aerial vehicles</topic><topic>Video data</topic><topic>Video Recording - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dan, Yuanhong</creatorcontrib><creatorcontrib>Li, Jinyan</creatorcontrib><creatorcontrib>Jin, Yu</creatorcontrib><creatorcontrib>Ji, Yong</creatorcontrib><creatorcontrib>Wang, Zhihao</creatorcontrib><creatorcontrib>Cheng, Dong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dan, Yuanhong</au><au>Li, Jinyan</au><au>Jin, Yu</au><au>Ji, Yong</au><au>Wang, Zhihao</au><au>Cheng, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2025-01-16</date><risdate>2025</risdate><volume>20</volume><issue>1</issue><spage>e0314485</spage><pages>e0314485-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Target tracking techniques in the UAV perspective utilize UAV cameras to capture video streams and identify and track specific targets in real-time. Deep learning UAV target tracking methods based on the Siamese family have achieved significant results but still face challenges regarding accuracy and speed compatibility. In this study, in order to refine the feature representation and reduce the computational effort to improve the efficiency of the tracker, we perform feature fusion in deep inter-correlation operations and introduce a global attention mechanism to enhance the model's field of view range and feature refinement capability to improve the tracking performance for small targets. In addition, we design an anchor-free frame-aware feature modulation mechanism to reduce computation and generate high-quality anchors while optimizing the target frame refinement computation to improve the adaptability to target deformation motion. Comparison experiments with several popular algorithms on UAV tracking datasets, such as UAV123@10fps, UAV20L, and DTB70, show that the algorithm balances speed and accuracy. In order to verify the reliability of the algorithm, we built a physical experimental environment on the Jetson Orin Nano platform. We realized a real-time processing speed of 30 frames per second.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39820190</pmid><doi>10.1371/journal.pone.0314485</doi><tpages>e0314485</tpages><orcidid>https://orcid.org/0009-0000-3404-6558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2025-01, Vol.20 (1), p.e0314485 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_3156421424 |
source | Publicly Available Content Database; PubMed Central |
subjects | Accuracy Adaptability Algorithms Biology and Life Sciences Computation Computer and Information Sciences Deep Learning Deformation mechanisms Design Design optimization Drone aircraft Efficiency Field of view Fourier transforms Frame design Frames per second Humans Image processing Image Processing, Computer-Assisted - methods Localization Machine learning Methods Modulation Physical Sciences Real time Remote Sensing Technology - instrumentation Remote Sensing Technology - methods Research and Analysis Methods Robotics - methods Social Sciences Target recognition Tracking Tracking techniques Unmanned aerial vehicles Video data Video Recording - methods |
title | UAV target tracking method based on global feature interaction and anchor-frame-free perceptual feature modulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=UAV%20target%20tracking%20method%20based%20on%20global%20feature%20interaction%20and%20anchor-frame-free%20perceptual%20feature%20modulation&rft.jtitle=PloS%20one&rft.au=Dan,%20Yuanhong&rft.date=2025-01-16&rft.volume=20&rft.issue=1&rft.spage=e0314485&rft.pages=e0314485-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0314485&rft_dat=%3Cgale_plos_%3EA823804736%3C/gale_plos_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4875-36891e401991fda3f975b13776fc9e04d0eba1cadf8f672d398e80a32e19b0303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3156421424&rft_id=info:pmid/39820190&rft_galeid=A823804736&rfr_iscdi=true |