Loading…
The Inhibitory Potential of Fc Receptor Homolog 4 on Memory B Cells
Fc receptor homolog 4 (FcRH4) is a B cell-specific member of the recently identified family of FcRHs whose intracellular domain contains three potential immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The signaling potential of this receptor, shown here to be preferentially expressed by mem...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (23), p.13489-13494 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fc receptor homolog 4 (FcRH4) is a B cell-specific member of the recently identified family of FcRHs whose intracellular domain contains three potential immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The signaling potential of this receptor, shown here to be preferentially expressed by memory B cells, was compared with the inhibitory receptor FcγRIIb in B cells expressing either WT FcγRIIb or chimeric proteins in which the intracellular domain of FcRH4 was fused to the transmembrane and extracellular domains of FcγRIIb. Coligation of the FcγRIIb/FcRH4 chimeric protein with the B cell receptor (BCR) led to tyrosine phosphorylation of the two membrane-distal tyrosines and profound inhibition of BCR-mediated calcium mobilization, whole cell tyrosine phosphorylation, and mitogen-activated protein (MAP)-kinase activation. Mutational analysis of the FcRH4 cytoplasmic region indicated that the two membrane-distal ITIMs are essential for this inhibitory potential. Phosphopeptides corresponding to these ITIMs could bind the Src homology 2 (SH2) domain-containing tyrosine phosphatases SHP-1 and SHP-2, which associated with the WT FcRH4 and with mutants having inhibitory capability. These findings indicate the potential for FcRH4 to abort B cell receptor signaling by recruiting SHP-1 and SHP-2 to its two membrane distal ITIMs. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1935944100 |