Loading…
Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates
Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS prot...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.13863-13868 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3 |
container_end_page | 13868 |
container_issue | 24 |
container_start_page | 13863 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Salazar, Juan C. Ahel, Ivan Orellana, Omar Tumbula-Hansen, Debra Krieger, Robert Daniels, Lacy Söll, Dieter |
description | Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG
Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG
Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes. |
doi_str_mv | 10.1073/pnas.1936123100 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_100_24_13863_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148878</jstor_id><sourcerecordid>3148878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBmALUdEQOHNBaMWhEodtx59rHzhEKdBKFUh8nC3Ha5ONNna69rbNv8dRoga49GRLfmZsz4vQGwznGBp6sQkmnWNFBSYUAzxDEwwK14IpeI4mAKSpJSPsFL1MaQUAikt4gU4xE5hzRSboch7dXezH3MVQRV-ZUM3WXYjGbvs6f_86q35sQ166bJKr7ru8rK5zqvYH4yLlwWSXXqETb_rkXh_WKfr1-dPP-VV98-3L9Xx2U1tORK4NEG7FgrbQGuOJ5w0w51pvBOOOUOElltAqYlsP1DNm-W5DfasEbamwdIo-7vtuxsXatdaFcn-vN0O3NsNWR9Ppf09Ct9S_450mkvIyoSk6O9QP8XZ0Ket1l6zrexNcHJNuMGOsDOlJiBURVAlc4Pv_4CqOQyhD0AQwZU1RBV3skR1iSoPzjy_GoHcx6l2M-hhjqXj390eP_pBbAR8OYFd5bAeaMI2pFFT7se-ze8jFVk_YQt7uySrlODwaipmUjaR_AH8Fuus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201347396</pqid></control><display><type>article</type><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</creator><creatorcontrib>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</creatorcontrib><description>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG
Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG
Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1936123100</identifier><identifier>PMID: 14615592</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidithiobacillus - enzymology ; Acidithiobacillus - genetics ; Acidithiobacillus ferrooxidans ; Amino acids ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Bacteria ; Base Sequence ; Biochemistry ; Biological Sciences ; DNA ; Enzyme substrates ; Enzymes ; Evolution, Molecular ; Gels ; Gene Duplication ; Gene Transfer, Horizontal ; Genes, Bacterial ; Genomes ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleotides ; Phylogeny ; Ribonucleic acid ; RNA ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Transfer, Gln - chemistry ; RNA, Transfer, Gln - genetics ; RNA, Transfer, Gln - metabolism ; RNA, Transfer, Glu - chemistry ; RNA, Transfer, Glu - genetics ; RNA, Transfer, Glu - metabolism ; Substrate Specificity ; Transfer RNA ; tRNA Gln ; tRNA Glu</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13863-13868</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 25, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</citedby><cites>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148878$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148878$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14615592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, Juan C.</creatorcontrib><creatorcontrib>Ahel, Ivan</creatorcontrib><creatorcontrib>Orellana, Omar</creatorcontrib><creatorcontrib>Tumbula-Hansen, Debra</creatorcontrib><creatorcontrib>Krieger, Robert</creatorcontrib><creatorcontrib>Daniels, Lacy</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG
Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG
Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</description><subject>Acidithiobacillus - enzymology</subject><subject>Acidithiobacillus - genetics</subject><subject>Acidithiobacillus ferrooxidans</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>DNA</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Gels</subject><subject>Gene Duplication</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes, Bacterial</subject><subject>Genomes</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides</subject><subject>Phylogeny</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Transfer, Gln - chemistry</subject><subject>RNA, Transfer, Gln - genetics</subject><subject>RNA, Transfer, Gln - metabolism</subject><subject>RNA, Transfer, Glu - chemistry</subject><subject>RNA, Transfer, Glu - genetics</subject><subject>RNA, Transfer, Glu - metabolism</subject><subject>Substrate Specificity</subject><subject>Transfer RNA</subject><subject>tRNA Gln</subject><subject>tRNA Glu</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0U1vEzEQBmALUdEQOHNBaMWhEodtx59rHzhEKdBKFUh8nC3Ha5ONNna69rbNv8dRoga49GRLfmZsz4vQGwznGBp6sQkmnWNFBSYUAzxDEwwK14IpeI4mAKSpJSPsFL1MaQUAikt4gU4xE5hzRSboch7dXezH3MVQRV-ZUM3WXYjGbvs6f_86q35sQ166bJKr7ru8rK5zqvYH4yLlwWSXXqETb_rkXh_WKfr1-dPP-VV98-3L9Xx2U1tORK4NEG7FgrbQGuOJ5w0w51pvBOOOUOElltAqYlsP1DNm-W5DfasEbamwdIo-7vtuxsXatdaFcn-vN0O3NsNWR9Ppf09Ct9S_450mkvIyoSk6O9QP8XZ0Ket1l6zrexNcHJNuMGOsDOlJiBURVAlc4Pv_4CqOQyhD0AQwZU1RBV3skR1iSoPzjy_GoHcx6l2M-hhjqXj390eP_pBbAR8OYFd5bAeaMI2pFFT7se-ze8jFVk_YQt7uySrlODwaipmUjaR_AH8Fuus</recordid><startdate>20031125</startdate><enddate>20031125</enddate><creator>Salazar, Juan C.</creator><creator>Ahel, Ivan</creator><creator>Orellana, Omar</creator><creator>Tumbula-Hansen, Debra</creator><creator>Krieger, Robert</creator><creator>Daniels, Lacy</creator><creator>Söll, Dieter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031125</creationdate><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><author>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acidithiobacillus - enzymology</topic><topic>Acidithiobacillus - genetics</topic><topic>Acidithiobacillus ferrooxidans</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>DNA</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Gels</topic><topic>Gene Duplication</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes, Bacterial</topic><topic>Genomes</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides</topic><topic>Phylogeny</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Transfer, Gln - chemistry</topic><topic>RNA, Transfer, Gln - genetics</topic><topic>RNA, Transfer, Gln - metabolism</topic><topic>RNA, Transfer, Glu - chemistry</topic><topic>RNA, Transfer, Glu - genetics</topic><topic>RNA, Transfer, Glu - metabolism</topic><topic>Substrate Specificity</topic><topic>Transfer RNA</topic><topic>tRNA Gln</topic><topic>tRNA Glu</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, Juan C.</creatorcontrib><creatorcontrib>Ahel, Ivan</creatorcontrib><creatorcontrib>Orellana, Omar</creatorcontrib><creatorcontrib>Tumbula-Hansen, Debra</creatorcontrib><creatorcontrib>Krieger, Robert</creatorcontrib><creatorcontrib>Daniels, Lacy</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, Juan C.</au><au>Ahel, Ivan</au><au>Orellana, Omar</au><au>Tumbula-Hansen, Debra</au><au>Krieger, Robert</au><au>Daniels, Lacy</au><au>Söll, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-25</date><risdate>2003</risdate><volume>100</volume><issue>24</issue><spage>13863</spage><epage>13868</epage><pages>13863-13868</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG
Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG
Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14615592</pmid><doi>10.1073/pnas.1936123100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13863-13868 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_100_24_13863_fulltext |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Acidithiobacillus - enzymology Acidithiobacillus - genetics Acidithiobacillus ferrooxidans Amino acids Amino Acyl-tRNA Synthetases - genetics Amino Acyl-tRNA Synthetases - metabolism Bacteria Base Sequence Biochemistry Biological Sciences DNA Enzyme substrates Enzymes Evolution, Molecular Gels Gene Duplication Gene Transfer, Horizontal Genes, Bacterial Genomes Helicobacter pylori Helicobacter pylori - enzymology Helicobacter pylori - genetics Molecular Sequence Data Nucleic Acid Conformation Nucleotides Phylogeny Ribonucleic acid RNA RNA, Bacterial - chemistry RNA, Bacterial - genetics RNA, Bacterial - metabolism RNA, Transfer, Gln - chemistry RNA, Transfer, Gln - genetics RNA, Transfer, Gln - metabolism RNA, Transfer, Glu - chemistry RNA, Transfer, Glu - genetics RNA, Transfer, Glu - metabolism Substrate Specificity Transfer RNA tRNA Gln tRNA Glu |
title | Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coevolution%20of%20an%20Aminoacyl-tRNA%20Synthetase%20with%20Its%20tRNA%20Substrates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Salazar,%20Juan%20C.&rft.date=2003-11-25&rft.volume=100&rft.issue=24&rft.spage=13863&rft.epage=13868&rft.pages=13863-13868&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1936123100&rft_dat=%3Cjstor_pnas_%3E3148878%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201347396&rft_id=info:pmid/14615592&rft_jstor_id=3148878&rfr_iscdi=true |