Loading…

Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates

Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS prot...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.13863-13868
Main Authors: Salazar, Juan C., Ahel, Ivan, Orellana, Omar, Tumbula-Hansen, Debra, Krieger, Robert, Daniels, Lacy, Söll, Dieter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3
cites cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3
container_end_page 13868
container_issue 24
container_start_page 13863
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Salazar, Juan C.
Ahel, Ivan
Orellana, Omar
Tumbula-Hansen, Debra
Krieger, Robert
Daniels, Lacy
Söll, Dieter
description Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in >20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.
doi_str_mv 10.1073/pnas.1936123100
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_100_24_13863_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148878</jstor_id><sourcerecordid>3148878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBmALUdEQOHNBaMWhEodtx59rHzhEKdBKFUh8nC3Ha5ONNna69rbNv8dRoga49GRLfmZsz4vQGwznGBp6sQkmnWNFBSYUAzxDEwwK14IpeI4mAKSpJSPsFL1MaQUAikt4gU4xE5hzRSboch7dXezH3MVQRV-ZUM3WXYjGbvs6f_86q35sQ166bJKr7ru8rK5zqvYH4yLlwWSXXqETb_rkXh_WKfr1-dPP-VV98-3L9Xx2U1tORK4NEG7FgrbQGuOJ5w0w51pvBOOOUOElltAqYlsP1DNm-W5DfasEbamwdIo-7vtuxsXatdaFcn-vN0O3NsNWR9Ppf09Ct9S_450mkvIyoSk6O9QP8XZ0Ket1l6zrexNcHJNuMGOsDOlJiBURVAlc4Pv_4CqOQyhD0AQwZU1RBV3skR1iSoPzjy_GoHcx6l2M-hhjqXj390eP_pBbAR8OYFd5bAeaMI2pFFT7se-ze8jFVk_YQt7uySrlODwaipmUjaR_AH8Fuus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201347396</pqid></control><display><type>article</type><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</creator><creatorcontrib>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</creatorcontrib><description>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in &gt;20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1936123100</identifier><identifier>PMID: 14615592</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acidithiobacillus - enzymology ; Acidithiobacillus - genetics ; Acidithiobacillus ferrooxidans ; Amino acids ; Amino Acyl-tRNA Synthetases - genetics ; Amino Acyl-tRNA Synthetases - metabolism ; Bacteria ; Base Sequence ; Biochemistry ; Biological Sciences ; DNA ; Enzyme substrates ; Enzymes ; Evolution, Molecular ; Gels ; Gene Duplication ; Gene Transfer, Horizontal ; Genes, Bacterial ; Genomes ; Helicobacter pylori ; Helicobacter pylori - enzymology ; Helicobacter pylori - genetics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleotides ; Phylogeny ; Ribonucleic acid ; RNA ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Transfer, Gln - chemistry ; RNA, Transfer, Gln - genetics ; RNA, Transfer, Gln - metabolism ; RNA, Transfer, Glu - chemistry ; RNA, Transfer, Glu - genetics ; RNA, Transfer, Glu - metabolism ; Substrate Specificity ; Transfer RNA ; tRNA Gln ; tRNA Glu</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13863-13868</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 25, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</citedby><cites>FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148878$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148878$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791,58236,58469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14615592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salazar, Juan C.</creatorcontrib><creatorcontrib>Ahel, Ivan</creatorcontrib><creatorcontrib>Orellana, Omar</creatorcontrib><creatorcontrib>Tumbula-Hansen, Debra</creatorcontrib><creatorcontrib>Krieger, Robert</creatorcontrib><creatorcontrib>Daniels, Lacy</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in &gt;20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</description><subject>Acidithiobacillus - enzymology</subject><subject>Acidithiobacillus - genetics</subject><subject>Acidithiobacillus ferrooxidans</subject><subject>Amino acids</subject><subject>Amino Acyl-tRNA Synthetases - genetics</subject><subject>Amino Acyl-tRNA Synthetases - metabolism</subject><subject>Bacteria</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>DNA</subject><subject>Enzyme substrates</subject><subject>Enzymes</subject><subject>Evolution, Molecular</subject><subject>Gels</subject><subject>Gene Duplication</subject><subject>Gene Transfer, Horizontal</subject><subject>Genes, Bacterial</subject><subject>Genomes</subject><subject>Helicobacter pylori</subject><subject>Helicobacter pylori - enzymology</subject><subject>Helicobacter pylori - genetics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleotides</subject><subject>Phylogeny</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Transfer, Gln - chemistry</subject><subject>RNA, Transfer, Gln - genetics</subject><subject>RNA, Transfer, Gln - metabolism</subject><subject>RNA, Transfer, Glu - chemistry</subject><subject>RNA, Transfer, Glu - genetics</subject><subject>RNA, Transfer, Glu - metabolism</subject><subject>Substrate Specificity</subject><subject>Transfer RNA</subject><subject>tRNA Gln</subject><subject>tRNA Glu</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0U1vEzEQBmALUdEQOHNBaMWhEodtx59rHzhEKdBKFUh8nC3Ha5ONNna69rbNv8dRoga49GRLfmZsz4vQGwznGBp6sQkmnWNFBSYUAzxDEwwK14IpeI4mAKSpJSPsFL1MaQUAikt4gU4xE5hzRSboch7dXezH3MVQRV-ZUM3WXYjGbvs6f_86q35sQ166bJKr7ru8rK5zqvYH4yLlwWSXXqETb_rkXh_WKfr1-dPP-VV98-3L9Xx2U1tORK4NEG7FgrbQGuOJ5w0w51pvBOOOUOElltAqYlsP1DNm-W5DfasEbamwdIo-7vtuxsXatdaFcn-vN0O3NsNWR9Ppf09Ct9S_450mkvIyoSk6O9QP8XZ0Ket1l6zrexNcHJNuMGOsDOlJiBURVAlc4Pv_4CqOQyhD0AQwZU1RBV3skR1iSoPzjy_GoHcx6l2M-hhjqXj390eP_pBbAR8OYFd5bAeaMI2pFFT7se-ze8jFVk_YQt7uySrlODwaipmUjaR_AH8Fuus</recordid><startdate>20031125</startdate><enddate>20031125</enddate><creator>Salazar, Juan C.</creator><creator>Ahel, Ivan</creator><creator>Orellana, Omar</creator><creator>Tumbula-Hansen, Debra</creator><creator>Krieger, Robert</creator><creator>Daniels, Lacy</creator><creator>Söll, Dieter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031125</creationdate><title>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</title><author>Salazar, Juan C. ; Ahel, Ivan ; Orellana, Omar ; Tumbula-Hansen, Debra ; Krieger, Robert ; Daniels, Lacy ; Söll, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acidithiobacillus - enzymology</topic><topic>Acidithiobacillus - genetics</topic><topic>Acidithiobacillus ferrooxidans</topic><topic>Amino acids</topic><topic>Amino Acyl-tRNA Synthetases - genetics</topic><topic>Amino Acyl-tRNA Synthetases - metabolism</topic><topic>Bacteria</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>DNA</topic><topic>Enzyme substrates</topic><topic>Enzymes</topic><topic>Evolution, Molecular</topic><topic>Gels</topic><topic>Gene Duplication</topic><topic>Gene Transfer, Horizontal</topic><topic>Genes, Bacterial</topic><topic>Genomes</topic><topic>Helicobacter pylori</topic><topic>Helicobacter pylori - enzymology</topic><topic>Helicobacter pylori - genetics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleotides</topic><topic>Phylogeny</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Transfer, Gln - chemistry</topic><topic>RNA, Transfer, Gln - genetics</topic><topic>RNA, Transfer, Gln - metabolism</topic><topic>RNA, Transfer, Glu - chemistry</topic><topic>RNA, Transfer, Glu - genetics</topic><topic>RNA, Transfer, Glu - metabolism</topic><topic>Substrate Specificity</topic><topic>Transfer RNA</topic><topic>tRNA Gln</topic><topic>tRNA Glu</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salazar, Juan C.</creatorcontrib><creatorcontrib>Ahel, Ivan</creatorcontrib><creatorcontrib>Orellana, Omar</creatorcontrib><creatorcontrib>Tumbula-Hansen, Debra</creatorcontrib><creatorcontrib>Krieger, Robert</creatorcontrib><creatorcontrib>Daniels, Lacy</creatorcontrib><creatorcontrib>Söll, Dieter</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salazar, Juan C.</au><au>Ahel, Ivan</au><au>Orellana, Omar</au><au>Tumbula-Hansen, Debra</au><au>Krieger, Robert</au><au>Daniels, Lacy</au><au>Söll, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-25</date><risdate>2003</risdate><volume>100</volume><issue>24</issue><spage>13863</spage><epage>13868</epage><pages>13863-13868</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Glutamyl-tRNA synthetases (GluRSs) occur in two types, the discriminating and the nondiscriminating enzymes. They differ in their choice of substrates and use either tRNAGluor both tRNAGluand tRNAGln. Although most organisms encode only one GluRS, a number of bacteria encode two different GluRS proteins; yet, the tRNA specificity of these enzymes and the reason for such gene duplications are unknown. A database search revealed duplicated GluRS genes in &gt;20 bacterial species, suggesting that this phenomenon is not unusual in the bacterial domain. To determine the tRNA preferences of GluRS, we chose the duplicated enzyme sets from Helicobacter pylori and Acidithiobacillus ferrooxidans. H. pylori contains one tRNAGluand one tRNAGluspecies, whereas A. ferrooxidans possesses two of each. We show that the duplicated GluRS proteins are enzyme pairs with complementary tRNA specificities. The H. pylori GluRS1 acylated only tRNAGlu, whereas GluRS2 was specific solely for tRNAGln. The A. ferrooxidans GluRS2 preferentially charged TRNAUUG Gln. Conversely, A. ferrooxidans GluRS1 glutamylated both tRNAGluisoacceptors and the tRNACUG Glnspecies. These three tRNA species have two structural elements in common, the augmented D-helix and a deletion of nucleotide 47. It appears that the discriminating or nondiscriminating natures of different GluRS enzymes have been derived by the coevolution of protein and tRNA structure. The coexistence of the two GluRS enzymes in one organism may lay the groundwork for the acquisition of the canonical glutaminyl-tRNA synthetase by lateral gene transfer from eukaryotes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14615592</pmid><doi>10.1073/pnas.1936123100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.13863-13868
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_100_24_13863_fulltext
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Acidithiobacillus - enzymology
Acidithiobacillus - genetics
Acidithiobacillus ferrooxidans
Amino acids
Amino Acyl-tRNA Synthetases - genetics
Amino Acyl-tRNA Synthetases - metabolism
Bacteria
Base Sequence
Biochemistry
Biological Sciences
DNA
Enzyme substrates
Enzymes
Evolution, Molecular
Gels
Gene Duplication
Gene Transfer, Horizontal
Genes, Bacterial
Genomes
Helicobacter pylori
Helicobacter pylori - enzymology
Helicobacter pylori - genetics
Molecular Sequence Data
Nucleic Acid Conformation
Nucleotides
Phylogeny
Ribonucleic acid
RNA
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Transfer, Gln - chemistry
RNA, Transfer, Gln - genetics
RNA, Transfer, Gln - metabolism
RNA, Transfer, Glu - chemistry
RNA, Transfer, Glu - genetics
RNA, Transfer, Glu - metabolism
Substrate Specificity
Transfer RNA
tRNA Gln
tRNA Glu
title Coevolution of an Aminoacyl-tRNA Synthetase with Its tRNA Substrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coevolution%20of%20an%20Aminoacyl-tRNA%20Synthetase%20with%20Its%20tRNA%20Substrates&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Salazar,%20Juan%20C.&rft.date=2003-11-25&rft.volume=100&rft.issue=24&rft.spage=13863&rft.epage=13868&rft.pages=13863-13868&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1936123100&rft_dat=%3Cjstor_pnas_%3E3148878%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c526t-a025c6b3d0daaf2f5704eedfa645e236f8180d92cdf03f44c5df033fd963d36c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201347396&rft_id=info:pmid/14615592&rft_jstor_id=3148878&rfr_iscdi=true