Loading…
The Ribosome as an Entropy Trap
To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters we...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2004-05, Vol.101 (21), p.7897-7901 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253 |
---|---|
cites | cdi_FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253 |
container_end_page | 7901 |
container_issue | 21 |
container_start_page | 7897 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 101 |
creator | Sievers, Annette Beringer, Malte Rodnina, Marina V. Wolfenden, Richard |
description | To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters were also determined for both reactions, from the temperature dependence of their second-order rate constants. In contrast with most protein enzymes, the enthalpy of activation is slightly less favorable on the ribosome than in solution. The 2× 107-fold rate enhancement produced by the ribosome is achieved entirely by lowering the entropy of activation. These results are consistent with the view that the ribosome enhances the rate of peptide bond formation mainly by positioning the substrates and/or water exclusion within the active site, rather than by conventional chemical catalysis. |
doi_str_mv | 10.1073/pnas.0402488101 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_101_21_7897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372422</jstor_id><sourcerecordid>3372422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha2qVVloz71UEHFAvQTGYye2Dz0gBBQJCQltz5bjOCWrbJzaSQX_Hke7Ytse4GTJ_t7zm3mEfKFwSkGws6E38RQ4IJeSAn1HFhQUzUuu4D1ZAKDIJUe-R_ZjXAGAKiR8JHu0oDzpywU5Wj647L6tfPRrl5mYmT677Mfgh6dsGczwiXxoTBfd5-15QH5eXS4vfuS3d9c3F-e3uS0UjLlwNWeGYVXZWiHjjVOWWrSoJFbKlozzUtaoKiyYhBptylIyQxurSifT5QH5vvEdpmrtautSBtPpIbRrE560N63-96VvH_Qv_0dzqgqUSX-y1Qf_e3Jx1Os2Wtd1pnd-ilpQVUpAfBOkQpWKwex4_B-48lPo0xI0AmWoRCESdLaBbPAxBte8JKag54b03JDeNZQUh38PuuO3lSTgaAvMyp0d1Ui1kGr-9NvrhG6mrhvd45jQrxt0FUcfXljGBPK0jGeKg6uM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201329757</pqid></control><display><type>article</type><title>The Ribosome as an Entropy Trap</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Sievers, Annette ; Beringer, Malte ; Rodnina, Marina V. ; Wolfenden, Richard</creator><creatorcontrib>Sievers, Annette ; Beringer, Malte ; Rodnina, Marina V. ; Wolfenden, Richard</creatorcontrib><description>To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters were also determined for both reactions, from the temperature dependence of their second-order rate constants. In contrast with most protein enzymes, the enthalpy of activation is slightly less favorable on the ribosome than in solution. The 2× 107-fold rate enhancement produced by the ribosome is achieved entirely by lowering the entropy of activation. These results are consistent with the view that the ribosome enhances the rate of peptide bond formation mainly by positioning the substrates and/or water exclusion within the active site, rather than by conventional chemical catalysis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0402488101</identifier><identifier>PMID: 15141076</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Amines ; Binding Sites ; Biochemistry ; Biological Sciences ; Catalysis ; Chemical bonding ; Entropy ; Esters ; Glycine - analogs & derivatives ; Glycine - metabolism ; Glycols ; Kinetics ; Magnetic Resonance Spectroscopy ; Physical Sciences ; Protein Biosynthesis ; Protons ; Ribonucleic acid ; Ribosomes ; Ribosomes - metabolism ; RNA ; Temperature ; Transfer RNA ; Tromethamine - metabolism ; Viscosity ; Water - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7897-7901</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 25, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253</citedby><cites>FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372422$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372422$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15141076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sievers, Annette</creatorcontrib><creatorcontrib>Beringer, Malte</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><title>The Ribosome as an Entropy Trap</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters were also determined for both reactions, from the temperature dependence of their second-order rate constants. In contrast with most protein enzymes, the enthalpy of activation is slightly less favorable on the ribosome than in solution. The 2× 107-fold rate enhancement produced by the ribosome is achieved entirely by lowering the entropy of activation. These results are consistent with the view that the ribosome enhances the rate of peptide bond formation mainly by positioning the substrates and/or water exclusion within the active site, rather than by conventional chemical catalysis.</description><subject>Active sites</subject><subject>Amines</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Chemical bonding</subject><subject>Entropy</subject><subject>Esters</subject><subject>Glycine - analogs & derivatives</subject><subject>Glycine - metabolism</subject><subject>Glycols</subject><subject>Kinetics</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Physical Sciences</subject><subject>Protein Biosynthesis</subject><subject>Protons</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>Temperature</subject><subject>Transfer RNA</subject><subject>Tromethamine - metabolism</subject><subject>Viscosity</subject><subject>Water - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkUFP3DAQha2qVVloz71UEHFAvQTGYye2Dz0gBBQJCQltz5bjOCWrbJzaSQX_Hke7Ytse4GTJ_t7zm3mEfKFwSkGws6E38RQ4IJeSAn1HFhQUzUuu4D1ZAKDIJUe-R_ZjXAGAKiR8JHu0oDzpywU5Wj647L6tfPRrl5mYmT677Mfgh6dsGczwiXxoTBfd5-15QH5eXS4vfuS3d9c3F-e3uS0UjLlwNWeGYVXZWiHjjVOWWrSoJFbKlozzUtaoKiyYhBptylIyQxurSifT5QH5vvEdpmrtautSBtPpIbRrE560N63-96VvH_Qv_0dzqgqUSX-y1Qf_e3Jx1Os2Wtd1pnd-ilpQVUpAfBOkQpWKwex4_B-48lPo0xI0AmWoRCESdLaBbPAxBte8JKag54b03JDeNZQUh38PuuO3lSTgaAvMyp0d1Ui1kGr-9NvrhG6mrhvd45jQrxt0FUcfXljGBPK0jGeKg6uM</recordid><startdate>20040525</startdate><enddate>20040525</enddate><creator>Sievers, Annette</creator><creator>Beringer, Malte</creator><creator>Rodnina, Marina V.</creator><creator>Wolfenden, Richard</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040525</creationdate><title>The Ribosome as an Entropy Trap</title><author>Sievers, Annette ; Beringer, Malte ; Rodnina, Marina V. ; Wolfenden, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active sites</topic><topic>Amines</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Chemical bonding</topic><topic>Entropy</topic><topic>Esters</topic><topic>Glycine - analogs & derivatives</topic><topic>Glycine - metabolism</topic><topic>Glycols</topic><topic>Kinetics</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Physical Sciences</topic><topic>Protein Biosynthesis</topic><topic>Protons</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>Temperature</topic><topic>Transfer RNA</topic><topic>Tromethamine - metabolism</topic><topic>Viscosity</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sievers, Annette</creatorcontrib><creatorcontrib>Beringer, Malte</creatorcontrib><creatorcontrib>Rodnina, Marina V.</creatorcontrib><creatorcontrib>Wolfenden, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sievers, Annette</au><au>Beringer, Malte</au><au>Rodnina, Marina V.</au><au>Wolfenden, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ribosome as an Entropy Trap</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-05-25</date><risdate>2004</risdate><volume>101</volume><issue>21</issue><spage>7897</spage><epage>7901</epage><pages>7897-7901</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To determine the effectiveness of the ribosome as a catalyst, we compared the rate of uncatalyzed peptide bond formation, by the reaction of the ethylene glycol ester of N-formylglycine with Tris(hydroxymethyl)aminomethane, with the rate of peptidyl transfer by the ribosome. Activation parameters were also determined for both reactions, from the temperature dependence of their second-order rate constants. In contrast with most protein enzymes, the enthalpy of activation is slightly less favorable on the ribosome than in solution. The 2× 107-fold rate enhancement produced by the ribosome is achieved entirely by lowering the entropy of activation. These results are consistent with the view that the ribosome enhances the rate of peptide bond formation mainly by positioning the substrates and/or water exclusion within the active site, rather than by conventional chemical catalysis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15141076</pmid><doi>10.1073/pnas.0402488101</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2004-05, Vol.101 (21), p.7897-7901 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_101_21_7897 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Active sites Amines Binding Sites Biochemistry Biological Sciences Catalysis Chemical bonding Entropy Esters Glycine - analogs & derivatives Glycine - metabolism Glycols Kinetics Magnetic Resonance Spectroscopy Physical Sciences Protein Biosynthesis Protons Ribonucleic acid Ribosomes Ribosomes - metabolism RNA Temperature Transfer RNA Tromethamine - metabolism Viscosity Water - metabolism |
title | The Ribosome as an Entropy Trap |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ribosome%20as%20an%20Entropy%20Trap&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sievers,%20Annette&rft.date=2004-05-25&rft.volume=101&rft.issue=21&rft.spage=7897&rft.epage=7901&rft.pages=7897-7901&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0402488101&rft_dat=%3Cjstor_pnas_%3E3372422%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-7ed43a32bbcd9234fe9c1c2c2982b9c634468d29b25380d2c00063a1fc96e8253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201329757&rft_id=info:pmid/15141076&rft_jstor_id=3372422&rfr_iscdi=true |