Loading…
Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy
Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intra...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (32), p.11179-11184 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153 |
container_end_page | 11184 |
container_issue | 32 |
container_start_page | 11179 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Yang, Liuchun McRae, Reagan Henary, Maged M. Patel, Raxit Lai, Barry Vogt, Stefan Fahrni, Christoph J. Gray, Harry B. |
description | Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus. |
doi_str_mv | 10.1073/pnas.0406547102 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_32_11179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376241</jstor_id><sourcerecordid>3376241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEoqVw5oKQ4YDEIe34I4l9QUIrCisVIdFythzH2WSVtVPbgUbij8fRrrqFCycf5jfPb97LspcYzjFU9GK0KpwDg7JgFQbyKDvFIHBeMgGPs1MAUuWcEXaSPQthCwCi4PA0O8EllJgTOM1-r3dq09sNci2KnUFrG73SZhimQXl040a38Wrs5mW-cuNoPPrVxw4pdDlMzpugjY3o2tjgPFK2QfWMrmerO--idxbd5d_V_IDVBn3ttXdBu3F-nj1p1RDMi8N7lv24_HSz-pJfffu8Xn28ynVBWMw5ppzgRnEOFIqiNRiKqqk4xUq1ohEVq9M1lWhJUwBhnBamFLSo27quBcMFPcs-7HXHqd6ZZrHs1SBH3--Un6VTvfx7YvtObtxPiXESozQJvNkLuBB7GXQfje60s9boKLngFYjEvDt84t3tZEKUuz4sSSpr3BRkyVmZIl_At_-AWzd5mwKQBDCDVOdi-WIPLVkFb9p7txjkUr1cqpfH6tPG64dHHvlD1wlAB2DZPMoRSUm6FFeLtff_QWQ7DUM0dzGxr_bsNkTn72FKq5IwTP8A_3zM8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201400405</pqid></control><display><type>article</type><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B.</creator><creatorcontrib>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0406547102</identifier><identifier>PMID: 16061820</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3T3 cells ; advanced photon source ; Animals ; Cartography ; Cells ; COPPER ; Copper - chemistry ; Copper - pharmacokinetics ; Emissions intensity ; FLUORESCENCE ; Fluorescent Dyes ; Golgi apparatus ; Golgi Apparatus - metabolism ; Kinetics ; Ligands ; Magnetic Resonance Spectroscopy - methods ; Mice ; MICROSCOPY ; Microscopy, Fluorescence - methods ; Mitochondria - metabolism ; Models, Chemical ; NIH 3T3 Cells ; NMR ; Nuclear magnetic resonance ; PARTICLE ACCELERATORS ; Physical Sciences ; Sensors ; SYNCHROTRONS ; Teeth ; TOPOGRAPHY ; X-Rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11179-11184</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 9, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</citedby><cites>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376241$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376241$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16061820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/898709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liuchun</creatorcontrib><creatorcontrib>McRae, Reagan</creatorcontrib><creatorcontrib>Henary, Maged M.</creatorcontrib><creatorcontrib>Patel, Raxit</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Vogt, Stefan</creatorcontrib><creatorcontrib>Fahrni, Christoph J.</creatorcontrib><creatorcontrib>Gray, Harry B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</description><subject>3T3 cells</subject><subject>advanced photon source</subject><subject>Animals</subject><subject>Cartography</subject><subject>Cells</subject><subject>COPPER</subject><subject>Copper - chemistry</subject><subject>Copper - pharmacokinetics</subject><subject>Emissions intensity</subject><subject>FLUORESCENCE</subject><subject>Fluorescent Dyes</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Mice</subject><subject>MICROSCOPY</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Mitochondria - metabolism</subject><subject>Models, Chemical</subject><subject>NIH 3T3 Cells</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>PARTICLE ACCELERATORS</subject><subject>Physical Sciences</subject><subject>Sensors</subject><subject>SYNCHROTRONS</subject><subject>Teeth</subject><subject>TOPOGRAPHY</subject><subject>X-Rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSMEoqVw5oKQ4YDEIe34I4l9QUIrCisVIdFythzH2WSVtVPbgUbij8fRrrqFCycf5jfPb97LspcYzjFU9GK0KpwDg7JgFQbyKDvFIHBeMgGPs1MAUuWcEXaSPQthCwCi4PA0O8EllJgTOM1-r3dq09sNci2KnUFrG73SZhimQXl040a38Wrs5mW-cuNoPPrVxw4pdDlMzpugjY3o2tjgPFK2QfWMrmerO--idxbd5d_V_IDVBn3ttXdBu3F-nj1p1RDMi8N7lv24_HSz-pJfffu8Xn28ynVBWMw5ppzgRnEOFIqiNRiKqqk4xUq1ohEVq9M1lWhJUwBhnBamFLSo27quBcMFPcs-7HXHqd6ZZrHs1SBH3--Un6VTvfx7YvtObtxPiXESozQJvNkLuBB7GXQfje60s9boKLngFYjEvDt84t3tZEKUuz4sSSpr3BRkyVmZIl_At_-AWzd5mwKQBDCDVOdi-WIPLVkFb9p7txjkUr1cqpfH6tPG64dHHvlD1wlAB2DZPMoRSUm6FFeLtff_QWQ7DUM0dzGxr_bsNkTn72FKq5IwTP8A_3zM8A</recordid><startdate>20050809</startdate><enddate>20050809</enddate><creator>Yang, Liuchun</creator><creator>McRae, Reagan</creator><creator>Henary, Maged M.</creator><creator>Patel, Raxit</creator><creator>Lai, Barry</creator><creator>Vogt, Stefan</creator><creator>Fahrni, Christoph J.</creator><creator>Gray, Harry B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20050809</creationdate><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><author>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3T3 cells</topic><topic>advanced photon source</topic><topic>Animals</topic><topic>Cartography</topic><topic>Cells</topic><topic>COPPER</topic><topic>Copper - chemistry</topic><topic>Copper - pharmacokinetics</topic><topic>Emissions intensity</topic><topic>FLUORESCENCE</topic><topic>Fluorescent Dyes</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Mice</topic><topic>MICROSCOPY</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Mitochondria - metabolism</topic><topic>Models, Chemical</topic><topic>NIH 3T3 Cells</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>PARTICLE ACCELERATORS</topic><topic>Physical Sciences</topic><topic>Sensors</topic><topic>SYNCHROTRONS</topic><topic>Teeth</topic><topic>TOPOGRAPHY</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liuchun</creatorcontrib><creatorcontrib>McRae, Reagan</creatorcontrib><creatorcontrib>Henary, Maged M.</creatorcontrib><creatorcontrib>Patel, Raxit</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Vogt, Stefan</creatorcontrib><creatorcontrib>Fahrni, Christoph J.</creatorcontrib><creatorcontrib>Gray, Harry B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liuchun</au><au>McRae, Reagan</au><au>Henary, Maged M.</au><au>Patel, Raxit</au><au>Lai, Barry</au><au>Vogt, Stefan</au><au>Fahrni, Christoph J.</au><au>Gray, Harry B.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-09</date><risdate>2005</risdate><volume>102</volume><issue>32</issue><spage>11179</spage><epage>11184</epage><pages>11179-11184</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16061820</pmid><doi>10.1073/pnas.0406547102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11179-11184 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_102_32_11179 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | 3T3 cells advanced photon source Animals Cartography Cells COPPER Copper - chemistry Copper - pharmacokinetics Emissions intensity FLUORESCENCE Fluorescent Dyes Golgi apparatus Golgi Apparatus - metabolism Kinetics Ligands Magnetic Resonance Spectroscopy - methods Mice MICROSCOPY Microscopy, Fluorescence - methods Mitochondria - metabolism Models, Chemical NIH 3T3 Cells NMR Nuclear magnetic resonance PARTICLE ACCELERATORS Physical Sciences Sensors SYNCHROTRONS Teeth TOPOGRAPHY X-Rays |
title | Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20the%20Intracellular%20Topography%20of%20Copper%20with%20a%20Fluorescent%20Sensor%20and%20by%20Synchrotron%20x-Ray%20Fluorescence%20Microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Liuchun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2005-08-09&rft.volume=102&rft.issue=32&rft.spage=11179&rft.epage=11184&rft.pages=11179-11184&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0406547102&rft_dat=%3Cjstor_pnas_%3E3376241%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201400405&rft_id=info:pmid/16061820&rft_jstor_id=3376241&rfr_iscdi=true |