Loading…

Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy

Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intra...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (32), p.11179-11184
Main Authors: Yang, Liuchun, McRae, Reagan, Henary, Maged M., Patel, Raxit, Lai, Barry, Vogt, Stefan, Fahrni, Christoph J., Gray, Harry B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153
cites cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153
container_end_page 11184
container_issue 32
container_start_page 11179
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Yang, Liuchun
McRae, Reagan
Henary, Maged M.
Patel, Raxit
Lai, Barry
Vogt, Stefan
Fahrni, Christoph J.
Gray, Harry B.
description Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.
doi_str_mv 10.1073/pnas.0406547102
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_32_11179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376241</jstor_id><sourcerecordid>3376241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEoqVw5oKQ4YDEIe34I4l9QUIrCisVIdFythzH2WSVtVPbgUbij8fRrrqFCycf5jfPb97LspcYzjFU9GK0KpwDg7JgFQbyKDvFIHBeMgGPs1MAUuWcEXaSPQthCwCi4PA0O8EllJgTOM1-r3dq09sNci2KnUFrG73SZhimQXl040a38Wrs5mW-cuNoPPrVxw4pdDlMzpugjY3o2tjgPFK2QfWMrmerO--idxbd5d_V_IDVBn3ttXdBu3F-nj1p1RDMi8N7lv24_HSz-pJfffu8Xn28ynVBWMw5ppzgRnEOFIqiNRiKqqk4xUq1ohEVq9M1lWhJUwBhnBamFLSo27quBcMFPcs-7HXHqd6ZZrHs1SBH3--Un6VTvfx7YvtObtxPiXESozQJvNkLuBB7GXQfje60s9boKLngFYjEvDt84t3tZEKUuz4sSSpr3BRkyVmZIl_At_-AWzd5mwKQBDCDVOdi-WIPLVkFb9p7txjkUr1cqpfH6tPG64dHHvlD1wlAB2DZPMoRSUm6FFeLtff_QWQ7DUM0dzGxr_bsNkTn72FKq5IwTP8A_3zM8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201400405</pqid></control><display><type>article</type><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B.</creator><creatorcontrib>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0406547102</identifier><identifier>PMID: 16061820</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>3T3 cells ; advanced photon source ; Animals ; Cartography ; Cells ; COPPER ; Copper - chemistry ; Copper - pharmacokinetics ; Emissions intensity ; FLUORESCENCE ; Fluorescent Dyes ; Golgi apparatus ; Golgi Apparatus - metabolism ; Kinetics ; Ligands ; Magnetic Resonance Spectroscopy - methods ; Mice ; MICROSCOPY ; Microscopy, Fluorescence - methods ; Mitochondria - metabolism ; Models, Chemical ; NIH 3T3 Cells ; NMR ; Nuclear magnetic resonance ; PARTICLE ACCELERATORS ; Physical Sciences ; Sensors ; SYNCHROTRONS ; Teeth ; TOPOGRAPHY ; X-Rays</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11179-11184</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 9, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</citedby><cites>FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/32.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376241$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376241$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16061820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/898709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Liuchun</creatorcontrib><creatorcontrib>McRae, Reagan</creatorcontrib><creatorcontrib>Henary, Maged M.</creatorcontrib><creatorcontrib>Patel, Raxit</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Vogt, Stefan</creatorcontrib><creatorcontrib>Fahrni, Christoph J.</creatorcontrib><creatorcontrib>Gray, Harry B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</description><subject>3T3 cells</subject><subject>advanced photon source</subject><subject>Animals</subject><subject>Cartography</subject><subject>Cells</subject><subject>COPPER</subject><subject>Copper - chemistry</subject><subject>Copper - pharmacokinetics</subject><subject>Emissions intensity</subject><subject>FLUORESCENCE</subject><subject>Fluorescent Dyes</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - metabolism</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Mice</subject><subject>MICROSCOPY</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Mitochondria - metabolism</subject><subject>Models, Chemical</subject><subject>NIH 3T3 Cells</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>PARTICLE ACCELERATORS</subject><subject>Physical Sciences</subject><subject>Sensors</subject><subject>SYNCHROTRONS</subject><subject>Teeth</subject><subject>TOPOGRAPHY</subject><subject>X-Rays</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxSMEoqVw5oKQ4YDEIe34I4l9QUIrCisVIdFythzH2WSVtVPbgUbij8fRrrqFCycf5jfPb97LspcYzjFU9GK0KpwDg7JgFQbyKDvFIHBeMgGPs1MAUuWcEXaSPQthCwCi4PA0O8EllJgTOM1-r3dq09sNci2KnUFrG73SZhimQXl040a38Wrs5mW-cuNoPPrVxw4pdDlMzpugjY3o2tjgPFK2QfWMrmerO--idxbd5d_V_IDVBn3ttXdBu3F-nj1p1RDMi8N7lv24_HSz-pJfffu8Xn28ynVBWMw5ppzgRnEOFIqiNRiKqqk4xUq1ohEVq9M1lWhJUwBhnBamFLSo27quBcMFPcs-7HXHqd6ZZrHs1SBH3--Un6VTvfx7YvtObtxPiXESozQJvNkLuBB7GXQfje60s9boKLngFYjEvDt84t3tZEKUuz4sSSpr3BRkyVmZIl_At_-AWzd5mwKQBDCDVOdi-WIPLVkFb9p7txjkUr1cqpfH6tPG64dHHvlD1wlAB2DZPMoRSUm6FFeLtff_QWQ7DUM0dzGxr_bsNkTn72FKq5IwTP8A_3zM8A</recordid><startdate>20050809</startdate><enddate>20050809</enddate><creator>Yang, Liuchun</creator><creator>McRae, Reagan</creator><creator>Henary, Maged M.</creator><creator>Patel, Raxit</creator><creator>Lai, Barry</creator><creator>Vogt, Stefan</creator><creator>Fahrni, Christoph J.</creator><creator>Gray, Harry B.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20050809</creationdate><title>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</title><author>Yang, Liuchun ; McRae, Reagan ; Henary, Maged M. ; Patel, Raxit ; Lai, Barry ; Vogt, Stefan ; Fahrni, Christoph J. ; Gray, Harry B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>3T3 cells</topic><topic>advanced photon source</topic><topic>Animals</topic><topic>Cartography</topic><topic>Cells</topic><topic>COPPER</topic><topic>Copper - chemistry</topic><topic>Copper - pharmacokinetics</topic><topic>Emissions intensity</topic><topic>FLUORESCENCE</topic><topic>Fluorescent Dyes</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - metabolism</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Mice</topic><topic>MICROSCOPY</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Mitochondria - metabolism</topic><topic>Models, Chemical</topic><topic>NIH 3T3 Cells</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>PARTICLE ACCELERATORS</topic><topic>Physical Sciences</topic><topic>Sensors</topic><topic>SYNCHROTRONS</topic><topic>Teeth</topic><topic>TOPOGRAPHY</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Liuchun</creatorcontrib><creatorcontrib>McRae, Reagan</creatorcontrib><creatorcontrib>Henary, Maged M.</creatorcontrib><creatorcontrib>Patel, Raxit</creatorcontrib><creatorcontrib>Lai, Barry</creatorcontrib><creatorcontrib>Vogt, Stefan</creatorcontrib><creatorcontrib>Fahrni, Christoph J.</creatorcontrib><creatorcontrib>Gray, Harry B.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Liuchun</au><au>McRae, Reagan</au><au>Henary, Maged M.</au><au>Patel, Raxit</au><au>Lai, Barry</au><au>Vogt, Stefan</au><au>Fahrni, Christoph J.</au><au>Gray, Harry B.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-09</date><risdate>2005</risdate><volume>102</volume><issue>32</issue><spage>11179</spage><epage>11184</epage><pages>11179-11184</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Copper is an essential micronutrient that plays a central role for a broad range of biological processes. Although there is compelling evidence that the intracellular milieu does not contain any free copper ions, the rapid kinetics of copper uptake and release suggests the presence of a labile intracellular copper pool. To elucidate the subcellular localization of this pool, we have synthesized and characterized a membrane-permeable, copper-selective fluorescent sensor (CTAP-1). Upon addition of Cu(I), the sensor exhibits a 4.6-fold emission enhancement and reaches a quantum yield of 14%. The sensor exhibits excellent selectivity toward Cu(I), and its emission response is not compromised by the presence of millimolar concentrations of Ca(II) or Mg(II) ions. Variable temperature dynamic NMR studies revealed a rapid Cu(I) self-exchange equilibrium with a low activation barrier of Δ G‡=44 kJ· mol-1 and k obs∼ 105 s-1 at room temperature. Mouse fibroblast cells (3T3) incubated with the sensor produced a copper-dependent perinuclear staining pattern, which colocalizes with the subcellular locations of mitochondria and the Golgi apparatus. To evaluate and confirm the sensor's copper-selectivity, we determined the subcellular topography of copper by synchrotron-based x-ray fluorescence microscopy. Furthermore, microprobe x-ray absorption measurements at various subcellular locations showed a near-edge feature that is characteristic for low-coordinate monovalent copper but does not resemble the published spectra for metallothionein or glutathione. The presented data provide a coherent picture with strong evidence for a kinetically labile copper pool, which is predominantly localized in the mitochondria and the Golgi apparatus.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16061820</pmid><doi>10.1073/pnas.0406547102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (32), p.11179-11184
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_102_32_11179
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects 3T3 cells
advanced photon source
Animals
Cartography
Cells
COPPER
Copper - chemistry
Copper - pharmacokinetics
Emissions intensity
FLUORESCENCE
Fluorescent Dyes
Golgi apparatus
Golgi Apparatus - metabolism
Kinetics
Ligands
Magnetic Resonance Spectroscopy - methods
Mice
MICROSCOPY
Microscopy, Fluorescence - methods
Mitochondria - metabolism
Models, Chemical
NIH 3T3 Cells
NMR
Nuclear magnetic resonance
PARTICLE ACCELERATORS
Physical Sciences
Sensors
SYNCHROTRONS
Teeth
TOPOGRAPHY
X-Rays
title Imaging of the Intracellular Topography of Copper with a Fluorescent Sensor and by Synchrotron x-Ray Fluorescence Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20the%20Intracellular%20Topography%20of%20Copper%20with%20a%20Fluorescent%20Sensor%20and%20by%20Synchrotron%20x-Ray%20Fluorescence%20Microscopy&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Yang,%20Liuchun&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2005-08-09&rft.volume=102&rft.issue=32&rft.spage=11179&rft.epage=11184&rft.pages=11179-11184&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0406547102&rft_dat=%3Cjstor_pnas_%3E3376241%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-813821da8803055fe1057d7831aaf9d974b61879f2d5024835e6935bfbbb94153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201400405&rft_id=info:pmid/16061820&rft_jstor_id=3376241&rfr_iscdi=true