Loading…

Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain

Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-11, Vol.102 (46), p.16662-16667
Main Authors: Scott H. Brewer, Dung M. Vu, Yuefeng Tang, Li, Ying, Franzen, Stefan, Raleigh, Daniel P., Dyer, R. Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723
cites cdi_FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723
container_end_page 16667
container_issue 46
container_start_page 16662
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Scott H. Brewer
Dung M. Vu
Yuefeng Tang
Li, Ying
Franzen, Stefan
Raleigh, Daniel P.
Dyer, R. Brian
description Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 µs at 60.2°C) and double phenylalanine mutant (3.01 µs at 49.9°C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 µts at 49.9µC, similar to the folding time of the double phenylalanine mutant at that temperature. The double phenylalanine mutant, however, unfolds faster with an unfolding time of 3.01 µs compared with 6.97 µs for the WT at 49.9°C.
doi_str_mv 10.1073/pnas.0505432102
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_102_46_16662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152277</jstor_id><sourcerecordid>4152277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723</originalsourceid><addsrcrecordid>eNqFkc1rFDEYxoModq2evYgMHgQP077JZDIzF0FKa8WKB63XkMnHNks2WfMh-t-bYZeuevGSwPv-nid5eBB6juEMw9Cd77xIZ9BDTzuCgTxAKwwTbhmd4CFaAZChHSmhJ-hJShsAmPoRHqMTzAibespWaH1pjJa5Cab5FFRxIlu_bm69CU5p1XzJIut6xiJziboJvsl3urmq24X7aL3OVqZFvsy_Weesb661UDurZVWWWYWtsP4pemSES_rZ4T5Ft1eXXy-u25vP7z9cvLtpZc9obhXt5dSLUaqJUDbUZBqIACG1UZLNytC5zgmmwnQzxgxP_UAplQSowGYg3Sl6u_fdlXmrldQ-R-H4LtqtiL94EJb_vfH2jq_DD47J2I3QVYPXB4MYvhedMt_aJLVzwutQEmfjCPVZWsFX_4CbUKKv4TgB3LGho1OFzveQjCGlqM39TzDwpUG-NMiPDVbFyz8DHPlDZRVoDsCiPNoRTlmlGFs83vwH4aY4l_XPXNkXe3aTcoj3MMU9IcPQ_QZDnrm_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367349</pqid></control><display><type>article</type><title>Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Scott H. Brewer ; Dung M. Vu ; Yuefeng Tang ; Li, Ying ; Franzen, Stefan ; Raleigh, Daniel P. ; Dyer, R. Brian</creator><creatorcontrib>Scott H. Brewer ; Dung M. Vu ; Yuefeng Tang ; Li, Ying ; Franzen, Stefan ; Raleigh, Daniel P. ; Dyer, R. Brian</creatorcontrib><description>Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 µs at 60.2°C) and double phenylalanine mutant (3.01 µs at 49.9°C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 µts at 49.9µC, similar to the folding time of the double phenylalanine mutant at that temperature. The double phenylalanine mutant, however, unfolds faster with an unfolding time of 3.01 µs compared with 6.97 µs for the WT at 49.9°C.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0505432102</identifier><identifier>PMID: 16269546</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Absorption spectra ; Amides ; Amplitude ; Biological Sciences ; Fourier transforms ; Infrared radiation ; Kinetics ; Laser beams ; Microfilament Proteins - chemistry ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Protein Folding ; Proteins ; Solvents ; Spectroscopy, Fourier Transform Infrared ; Spectrum analysis ; Temperature ; Temperature dependence ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (46), p.16662-16667</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 15, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723</citedby><cites>FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152277$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152277$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16269546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott H. Brewer</creatorcontrib><creatorcontrib>Dung M. Vu</creatorcontrib><creatorcontrib>Yuefeng Tang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Franzen, Stefan</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><title>Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 µs at 60.2°C) and double phenylalanine mutant (3.01 µs at 49.9°C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 µts at 49.9µC, similar to the folding time of the double phenylalanine mutant at that temperature. The double phenylalanine mutant, however, unfolds faster with an unfolding time of 3.01 µs compared with 6.97 µs for the WT at 49.9°C.</description><subject>Absorption spectra</subject><subject>Amides</subject><subject>Amplitude</subject><subject>Biological Sciences</subject><subject>Fourier transforms</subject><subject>Infrared radiation</subject><subject>Kinetics</subject><subject>Laser beams</subject><subject>Microfilament Proteins - chemistry</subject><subject>Mutation</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Solvents</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rFDEYxoModq2evYgMHgQP077JZDIzF0FKa8WKB63XkMnHNks2WfMh-t-bYZeuevGSwPv-nid5eBB6juEMw9Cd77xIZ9BDTzuCgTxAKwwTbhmd4CFaAZChHSmhJ-hJShsAmPoRHqMTzAibespWaH1pjJa5Cab5FFRxIlu_bm69CU5p1XzJIut6xiJziboJvsl3urmq24X7aL3OVqZFvsy_Weesb661UDurZVWWWYWtsP4pemSES_rZ4T5Ft1eXXy-u25vP7z9cvLtpZc9obhXt5dSLUaqJUDbUZBqIACG1UZLNytC5zgmmwnQzxgxP_UAplQSowGYg3Sl6u_fdlXmrldQ-R-H4LtqtiL94EJb_vfH2jq_DD47J2I3QVYPXB4MYvhedMt_aJLVzwutQEmfjCPVZWsFX_4CbUKKv4TgB3LGho1OFzveQjCGlqM39TzDwpUG-NMiPDVbFyz8DHPlDZRVoDsCiPNoRTlmlGFs83vwH4aY4l_XPXNkXe3aTcoj3MMU9IcPQ_QZDnrm_</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Scott H. Brewer</creator><creator>Dung M. Vu</creator><creator>Yuefeng Tang</creator><creator>Li, Ying</creator><creator>Franzen, Stefan</creator><creator>Raleigh, Daniel P.</creator><creator>Dyer, R. Brian</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051115</creationdate><title>Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain</title><author>Scott H. Brewer ; Dung M. Vu ; Yuefeng Tang ; Li, Ying ; Franzen, Stefan ; Raleigh, Daniel P. ; Dyer, R. Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Absorption spectra</topic><topic>Amides</topic><topic>Amplitude</topic><topic>Biological Sciences</topic><topic>Fourier transforms</topic><topic>Infrared radiation</topic><topic>Kinetics</topic><topic>Laser beams</topic><topic>Microfilament Proteins - chemistry</topic><topic>Mutation</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Solvents</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott H. Brewer</creatorcontrib><creatorcontrib>Dung M. Vu</creatorcontrib><creatorcontrib>Yuefeng Tang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Franzen, Stefan</creatorcontrib><creatorcontrib>Raleigh, Daniel P.</creatorcontrib><creatorcontrib>Dyer, R. Brian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott H. Brewer</au><au>Dung M. Vu</au><au>Yuefeng Tang</au><au>Li, Ying</au><au>Franzen, Stefan</au><au>Raleigh, Daniel P.</au><au>Dyer, R. Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>102</volume><issue>46</issue><spage>16662</spage><epage>16667</epage><pages>16662-16667</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Equilibrium Fourier transform infrared (FTIR) and temperature-jump (T-jump) IR spectroscopic techniques were used to study the thermodynamics and kinetics of the unfolding and folding of the villin headpiece helical subdomain (HP36), a small three-helix protein. A double phenylalanine mutant (HP36 F47L, F51L) that destabilizes the hydrophobic core of this protein also was studied. The double mutant is less stable than wild type (WT) and has been shown to contain less residual secondary structure and tertiary contacts in its unfolded state. The relaxation kinetics after a T-jump perturbation were studied for both HP36 and HP36 F47L, F51L. Both proteins exhibited biphasic relaxation kinetics in response to a T-jump. The folding times for the WT (3.23 µs at 60.2°C) and double phenylalanine mutant (3.01 µs at 49.9°C) at the approximate midpoints of their thermal unfolding transitions were found to be similar. The folding time for the WT was determined to be 3.34 µts at 49.9µC, similar to the folding time of the double phenylalanine mutant at that temperature. The double phenylalanine mutant, however, unfolds faster with an unfolding time of 3.01 µs compared with 6.97 µs for the WT at 49.9°C.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16269546</pmid><doi>10.1073/pnas.0505432102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-11, Vol.102 (46), p.16662-16667
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_102_46_16662
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Absorption spectra
Amides
Amplitude
Biological Sciences
Fourier transforms
Infrared radiation
Kinetics
Laser beams
Microfilament Proteins - chemistry
Mutation
Nuclear Magnetic Resonance, Biomolecular
Protein Conformation
Protein Folding
Proteins
Solvents
Spectroscopy, Fourier Transform Infrared
Spectrum analysis
Temperature
Temperature dependence
Thermodynamic equilibrium
Thermodynamics
title Effect of Modulating Unfolded State Structure on the Folding Kinetics of the Villin Headpiece Subdomain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T07%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Modulating%20Unfolded%20State%20Structure%20on%20the%20Folding%20Kinetics%20of%20the%20Villin%20Headpiece%20Subdomain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Scott%20H.%20Brewer&rft.date=2005-11-15&rft.volume=102&rft.issue=46&rft.spage=16662&rft.epage=16667&rft.pages=16662-16667&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0505432102&rft_dat=%3Cjstor_pnas_%3E4152277%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-d45c95a8cd92467050e02a0acefdc6bdf4b246214af3b1161957444c204a1f723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201367349&rft_id=info:pmid/16269546&rft_jstor_id=4152277&rfr_iscdi=true