Loading…

Cryo-Electron Tomography of Vaccinia Virus

The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4-6 nm. The tomographic reconstruction allows us to dissect the different structural compon...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2005-02, Vol.102 (8), p.2772-2777
Main Authors: Cyrklaff, Marek, Risco, Cristina, Fernández, Jose Jesús, Jiménez, Maria Victoria, Estéban, Mariano, Baumeister, Wolfgang, Carrascosa, José L., Rossmann, Michael G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The combination of cryo-microscopy and electron tomographic reconstruction has allowed us to determine the structure of one of the more complex viruses, intracellular mature vaccinia virus, at a resolution of 4-6 nm. The tomographic reconstruction allows us to dissect the different structural components of the viral particle, avoiding projection artifacts derived from previous microscopic observations. A surface-rendering representation revealed brick-shaped viral particles with slightly rounded edges and dimensions of ≈360 × 270 × 250 nm. The outer layer was consistent with a lipid membrane (5-6 nm thick), below which usually two lateral bodies were found, built up by a heterogeneous material without apparent ordering or repetitive features. The internal core presented an inner cavity with electron dense coils of presumptive DNA-protein complexes, together with areas of very low density. The core was surrounded by two layers comprising an overall thickness of ≈18-19 nm; the inner layer was consistent with a lipid membrane. The outer layer was discontinuous, formed by a periodic palisade built by the side interaction of T-shaped protein spikes that were anchored in the lower membrane and were arranged into small hexagonal crystallites. It was possible to detect a few pore-like structures that communicated the inner side of the core with the region outside the layer built by the T-shaped spike palisade.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0409825102