Loading…
Endosomal sorting of readily releasable synaptic vesicles
Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (44), p.19055-19060 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43 |
container_end_page | 19060 |
container_issue | 44 |
container_start_page | 19055 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Hoopmann, Peer Punge, Annedore Barysch, Sina V. Westphal, Volker Bückers, Johanna Opazo, Felipe Bethani, Ioanna Lauterbach, Marcel A. Hell, Stefan W. Rizzoli, Silvio O. Südhof, Thomas C. |
description | Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome. |
doi_str_mv | 10.1073/pnas.1007037107 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_44_19055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25748620</jstor_id><sourcerecordid>25748620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43</originalsourceid><addsrcrecordid>eNqNkU1P5DAMhiO0Kxg-zntaVHHZUxc7n81lJYRYQELiAucobVPoKNMMSQdp_j0ZzcAAFzjZsh-_sv0S8gvhL4Jip_PBppyBAqZyYYdMEDSWkmv4QSYAVJUVp3yP7Kc0BQAtKtglezQnkmqcEH0xtCGFmfVFCnHsh4cidEV0tu39MkfvbLK1d0VaDnY-9k3x7FLfeJcOyc_O-uSONvGA3P-_uDu_Km9uL6_Pz27KRmg5llWlgLd1xQSC4Ix3FnkLGqxDVoNCCrXTzlopuBadbLRraKvy5pRxrFvODsi_te58Uc9c27hhjNabeexnNi5NsL352Bn6R_MQng3VimlUWeDPRiCGp4VLo5n1qXHe28GFRTKV1si4Zvx7JAr8mlSS8irfQDN58omchkUc8sdWkEIlUWbodA01MaQUXfd2HoJZGW1WRput0Xni-P1X3vhXZzNQbIDV5FZOGc4NahAiI7_XyDSNIW4lhOKVpMBeAJm8ttw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762717616</pqid></control><display><type>article</type><title>Endosomal sorting of readily releasable synaptic vesicles</title><source>Open Access: PubMed Central</source><source>JSTOR Journals and Primary Sources</source><creator>Hoopmann, Peer ; Punge, Annedore ; Barysch, Sina V. ; Westphal, Volker ; Bückers, Johanna ; Opazo, Felipe ; Bethani, Ioanna ; Lauterbach, Marcel A. ; Hell, Stefan W. ; Rizzoli, Silvio O. ; Südhof, Thomas C.</creator><creatorcontrib>Hoopmann, Peer ; Punge, Annedore ; Barysch, Sina V. ; Westphal, Volker ; Bückers, Johanna ; Opazo, Felipe ; Bethani, Ioanna ; Lauterbach, Marcel A. ; Hell, Stefan W. ; Rizzoli, Silvio O. ; Südhof, Thomas C.</creatorcontrib><description>Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1007037107</identifier><identifier>PMID: 20956291</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Antibodies ; Biological Sciences ; Brain ; Budding ; buds ; Cell Membrane - metabolism ; Cell membranes ; Emissions ; Endocytosis ; Endosomes ; Endosomes - metabolism ; Exocytosis ; Exocytosis - physiology ; Hippocampus ; Membrane Proteins - metabolism ; Membranes ; Mice ; Microscopy ; Models, Biological ; Molecular modelling ; Molecules ; Nerve endings ; Neurons ; Neurons - metabolism ; Neurotransmitter release ; Neurotransmitters ; Oxidation ; PC12 Cells ; Pheochromocytoma cells ; Photooxidation ; Plasma ; Plasma membranes ; Protein turnover ; Proteins ; Rats ; Recycling ; Synaptic vesicles ; Synaptic Vesicles - metabolism ; Synaptosomes ; Synaptotagmins ; Waste management</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (44), p.19055-19060</ispartof><rights>Copyright National Academy of Sciences Nov 2, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43</citedby><cites>FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/44.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25748620$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25748620$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780,58225,58458</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20956291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoopmann, Peer</creatorcontrib><creatorcontrib>Punge, Annedore</creatorcontrib><creatorcontrib>Barysch, Sina V.</creatorcontrib><creatorcontrib>Westphal, Volker</creatorcontrib><creatorcontrib>Bückers, Johanna</creatorcontrib><creatorcontrib>Opazo, Felipe</creatorcontrib><creatorcontrib>Bethani, Ioanna</creatorcontrib><creatorcontrib>Lauterbach, Marcel A.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><creatorcontrib>Rizzoli, Silvio O.</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><title>Endosomal sorting of readily releasable synaptic vesicles</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Budding</subject><subject>buds</subject><subject>Cell Membrane - metabolism</subject><subject>Cell membranes</subject><subject>Emissions</subject><subject>Endocytosis</subject><subject>Endosomes</subject><subject>Endosomes - metabolism</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Hippocampus</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Models, Biological</subject><subject>Molecular modelling</subject><subject>Molecules</subject><subject>Nerve endings</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neurotransmitter release</subject><subject>Neurotransmitters</subject><subject>Oxidation</subject><subject>PC12 Cells</subject><subject>Pheochromocytoma cells</subject><subject>Photooxidation</subject><subject>Plasma</subject><subject>Plasma membranes</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Rats</subject><subject>Recycling</subject><subject>Synaptic vesicles</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptosomes</subject><subject>Synaptotagmins</subject><subject>Waste management</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkU1P5DAMhiO0Kxg-zntaVHHZUxc7n81lJYRYQELiAucobVPoKNMMSQdp_j0ZzcAAFzjZsh-_sv0S8gvhL4Jip_PBppyBAqZyYYdMEDSWkmv4QSYAVJUVp3yP7Kc0BQAtKtglezQnkmqcEH0xtCGFmfVFCnHsh4cidEV0tu39MkfvbLK1d0VaDnY-9k3x7FLfeJcOyc_O-uSONvGA3P-_uDu_Km9uL6_Pz27KRmg5llWlgLd1xQSC4Ix3FnkLGqxDVoNCCrXTzlopuBadbLRraKvy5pRxrFvODsi_te58Uc9c27hhjNabeexnNi5NsL352Bn6R_MQng3VimlUWeDPRiCGp4VLo5n1qXHe28GFRTKV1si4Zvx7JAr8mlSS8irfQDN58omchkUc8sdWkEIlUWbodA01MaQUXfd2HoJZGW1WRput0Xni-P1X3vhXZzNQbIDV5FZOGc4NahAiI7_XyDSNIW4lhOKVpMBeAJm8ttw</recordid><startdate>20101102</startdate><enddate>20101102</enddate><creator>Hoopmann, Peer</creator><creator>Punge, Annedore</creator><creator>Barysch, Sina V.</creator><creator>Westphal, Volker</creator><creator>Bückers, Johanna</creator><creator>Opazo, Felipe</creator><creator>Bethani, Ioanna</creator><creator>Lauterbach, Marcel A.</creator><creator>Hell, Stefan W.</creator><creator>Rizzoli, Silvio O.</creator><creator>Südhof, Thomas C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7TV</scope><scope>5PM</scope></search><sort><creationdate>20101102</creationdate><title>Endosomal sorting of readily releasable synaptic vesicles</title><author>Hoopmann, Peer ; Punge, Annedore ; Barysch, Sina V. ; Westphal, Volker ; Bückers, Johanna ; Opazo, Felipe ; Bethani, Ioanna ; Lauterbach, Marcel A. ; Hell, Stefan W. ; Rizzoli, Silvio O. ; Südhof, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Budding</topic><topic>buds</topic><topic>Cell Membrane - metabolism</topic><topic>Cell membranes</topic><topic>Emissions</topic><topic>Endocytosis</topic><topic>Endosomes</topic><topic>Endosomes - metabolism</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Hippocampus</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Models, Biological</topic><topic>Molecular modelling</topic><topic>Molecules</topic><topic>Nerve endings</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neurotransmitter release</topic><topic>Neurotransmitters</topic><topic>Oxidation</topic><topic>PC12 Cells</topic><topic>Pheochromocytoma cells</topic><topic>Photooxidation</topic><topic>Plasma</topic><topic>Plasma membranes</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Rats</topic><topic>Recycling</topic><topic>Synaptic vesicles</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptosomes</topic><topic>Synaptotagmins</topic><topic>Waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoopmann, Peer</creatorcontrib><creatorcontrib>Punge, Annedore</creatorcontrib><creatorcontrib>Barysch, Sina V.</creatorcontrib><creatorcontrib>Westphal, Volker</creatorcontrib><creatorcontrib>Bückers, Johanna</creatorcontrib><creatorcontrib>Opazo, Felipe</creatorcontrib><creatorcontrib>Bethani, Ioanna</creatorcontrib><creatorcontrib>Lauterbach, Marcel A.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><creatorcontrib>Rizzoli, Silvio O.</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoopmann, Peer</au><au>Punge, Annedore</au><au>Barysch, Sina V.</au><au>Westphal, Volker</au><au>Bückers, Johanna</au><au>Opazo, Felipe</au><au>Bethani, Ioanna</au><au>Lauterbach, Marcel A.</au><au>Hell, Stefan W.</au><au>Rizzoli, Silvio O.</au><au>Südhof, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endosomal sorting of readily releasable synaptic vesicles</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-11-02</date><risdate>2010</risdate><volume>107</volume><issue>44</issue><spage>19055</spage><epage>19060</epage><pages>19055-19060</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neurotransmitter release is achieved through the fusion of synaptic vesicles with the neuronal plasma membrane (exocytosis). Vesicles are then retrieved from the plasma membrane (endocytosis). It was hypothesized more than 3 decades ago that endosomes participate in vesicle recycling, constituting a slow endocytosis pathway required especially after prolonged stimulation. This recycling model predicts that newly endocytosed vesicles fuse with an endosome, which sorts (organizes) the molecules and buds exocytosis-competent vesicles. We analyzed here the endosome function using hippocampal neurons, isolated nerve terminals (synaptosomes), and PC12 cells by stimulated emission depletion microscopy, photooxidation EM, and several conventional microscopy assays. Surprisingly, we found that endosomal sorting is a rapid pathway, which appeared to be involved in the recycling of the initial vesicles to be released on stimulation, the readily releasable pool. In agreement with the endosomal model, the vesicle composition changed after endocytosis, with the newly formed vesicles being enriched in plasma membrane proteins. Vesicle proteins were organized in clusters both in the plasma membrane (on exocytosis) and in the endosome. In the latter compartment, they segregated from plasma membrane components in a process that is likely important for sorting/budding of newly developed vesicles from the endosome.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20956291</pmid><doi>10.1073/pnas.1007037107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-11, Vol.107 (44), p.19055-19060 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_107_44_19055 |
source | Open Access: PubMed Central; JSTOR Journals and Primary Sources |
subjects | Animals Antibodies Biological Sciences Brain Budding buds Cell Membrane - metabolism Cell membranes Emissions Endocytosis Endosomes Endosomes - metabolism Exocytosis Exocytosis - physiology Hippocampus Membrane Proteins - metabolism Membranes Mice Microscopy Models, Biological Molecular modelling Molecules Nerve endings Neurons Neurons - metabolism Neurotransmitter release Neurotransmitters Oxidation PC12 Cells Pheochromocytoma cells Photooxidation Plasma Plasma membranes Protein turnover Proteins Rats Recycling Synaptic vesicles Synaptic Vesicles - metabolism Synaptosomes Synaptotagmins Waste management |
title | Endosomal sorting of readily releasable synaptic vesicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A38%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endosomal%20sorting%20of%20readily%20releasable%20synaptic%20vesicles&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hoopmann,%20Peer&rft.date=2010-11-02&rft.volume=107&rft.issue=44&rft.spage=19055&rft.epage=19060&rft.pages=19055-19060&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1007037107&rft_dat=%3Cjstor_pnas_%3E25748620%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-88704db835105434fa14d090ae13b07120be9eaa65495f6c9ec2d70022341bd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762717616&rft_id=info:pmid/20956291&rft_jstor_id=25748620&rfr_iscdi=true |