Loading…

Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion

Sister chromatids are held together, from the time they are made during S phase until they are pulled apart just before cell division, by a protein complex called cohesin. The mechanistic details by which sister chromatid cohesion is established and maintained have remained elusive, particularly in...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-11, Vol.107 (47), p.20364-20369
Main Authors: Lafont, Andrea L., Song, Jianhua, Rankin, Susannah, Koshland, Douglas E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sister chromatids are held together, from the time they are made during S phase until they are pulled apart just before cell division, by a protein complex called cohesin. The mechanistic details by which sister chromatid cohesion is established and maintained have remained elusive, particularly in vertebrate systems. Sororin, a protein that interacts with the cohesin complex, is essential for cohesion in vertebrates, but how it participates in the process is unknown. Here we demonstrate that sororin recruitment depends on active DNA replication and that sororin loading onto chromosomes depends upon another essential cohesion factor, the acetyltransferase Eco2. We find that Eco2, like sororin, is a substrate of the anaphase-promoting complex (APC), which ensures that protein levels remain low before S phase. These findings demonstrate that sororin and Eco2 work together to form a unique regulatory module that limits cohesion to cells with replicated chromatin and support a model in which cohesion in vertebrates is not fully established until the G2 phase of the cell cycle.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1011069107