Loading…
Functional dynamics in the voltage-dependent anion channel
The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2010-12, Vol.107 (52), p.22546-22551 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3 |
container_end_page | 22551 |
container_issue | 52 |
container_start_page | 22546 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Villinger, Saskia Briones, Rodolfo Giller, Karin Zachariae, Ulrich Lange, Adam de Groot, Bert L. Griesinger, Christian Becker, Stefan Zweckstetter, Markus Gouaux, Eric |
description | The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating. |
doi_str_mv | 10.1073/pnas.1012310108 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_107_52_22546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25770676</jstor_id><sourcerecordid>25770676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3</originalsourceid><addsrcrecordid>eNpdkc1rGzEQxUVpaZyPc04pSy89bTMaSTtSD4ESmqQQ6KU9C1krx2vWkrvaDeS_j4ydOO1FI5jfPGbeY-ycw1cOJC430eXy4yjKA_odm3EwvG6kgfdsBoBUa4nyiB3nvAIAozR8ZEfIudREYsa-3UzRj12Krq_ap-jWnc9VF6txGarH1I_uIdRt2ITYhjhWLhay8ksXY-hP2YeF63M429cT9ufmx-_ru_r-1-3P6-_3tVcCx9phM1eekBwKFZQJpI0C1WoSrkHSaKDVxrjWcVRckVJGei_VQs9BUhvECbva6W6m-Tq0viwyuN5uhm7thiebXGf_7cRuaR_SoxXFF6mxCHzZCwzp7xTyaNdd9qHvXQxpylYjJ0HG8EJ-_o9cpWko3mwhLO6B1AW63EF-SDkPYfG6Cge7TcVuU7GHVMrEp7cXvPIvMRSg2gPbyYMcWYUWUcmmIBc7ZJXHNBwkFBE01IhnZy2bgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>822095048</pqid></control><display><type>article</type><title>Functional dynamics in the voltage-dependent anion channel</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Villinger, Saskia ; Briones, Rodolfo ; Giller, Karin ; Zachariae, Ulrich ; Lange, Adam ; de Groot, Bert L. ; Griesinger, Christian ; Becker, Stefan ; Zweckstetter, Markus ; Gouaux, Eric</creator><creatorcontrib>Villinger, Saskia ; Briones, Rodolfo ; Giller, Karin ; Zachariae, Ulrich ; Lange, Adam ; de Groot, Bert L. ; Griesinger, Christian ; Becker, Stefan ; Zweckstetter, Markus ; Gouaux, Eric</creatorcontrib><description>The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1012310108</identifier><identifier>PMID: 21148773</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Animals ; Apoptosis ; Biological Sciences ; Cells ; Crystal structure ; Crystallography, X-Ray ; Dicyclohexylcarbodiimide - chemistry ; Dimyristoylphosphatidylcholine - chemistry ; Humans ; Ion Channel Gating - physiology ; Ions ; Kinetics ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Lipids ; Magnetic Resonance Spectroscopy - methods ; Membrane proteins ; Membranes ; Mice ; Mitochondrial Membranes - chemistry ; Mitochondrial Membranes - metabolism ; Modeling ; Models, Molecular ; Molecular Dynamics Simulation ; Molecular structure ; Mutation, Missense ; NMR ; Nuclear magnetic resonance ; P branes ; Principal components analysis ; Protein Structure, Secondary ; Proteins ; Simulation ; Solutions ; Spectroscopy ; Spectrum analysis ; Time Factors ; Voltage dependent anion channels ; Voltage-Dependent Anion Channel 1 - chemistry ; Voltage-Dependent Anion Channel 1 - genetics ; Voltage-Dependent Anion Channel 1 - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (52), p.22546-22551</ispartof><rights>Copyright National Academy of Sciences Dec 28, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3</citedby><cites>FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/52.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25770676$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25770676$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21148773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villinger, Saskia</creatorcontrib><creatorcontrib>Briones, Rodolfo</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Zachariae, Ulrich</creatorcontrib><creatorcontrib>Lange, Adam</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Zweckstetter, Markus</creatorcontrib><creatorcontrib>Gouaux, Eric</creatorcontrib><title>Functional dynamics in the voltage-dependent anion channel</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Dicyclohexylcarbodiimide - chemistry</subject><subject>Dimyristoylphosphatidylcholine - chemistry</subject><subject>Humans</subject><subject>Ion Channel Gating - physiology</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mitochondrial Membranes - chemistry</subject><subject>Mitochondrial Membranes - metabolism</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular structure</subject><subject>Mutation, Missense</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>P branes</subject><subject>Principal components analysis</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Simulation</subject><subject>Solutions</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Time Factors</subject><subject>Voltage dependent anion channels</subject><subject>Voltage-Dependent Anion Channel 1 - chemistry</subject><subject>Voltage-Dependent Anion Channel 1 - genetics</subject><subject>Voltage-Dependent Anion Channel 1 - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkc1rGzEQxUVpaZyPc04pSy89bTMaSTtSD4ESmqQQ6KU9C1krx2vWkrvaDeS_j4ydOO1FI5jfPGbeY-ycw1cOJC430eXy4yjKA_odm3EwvG6kgfdsBoBUa4nyiB3nvAIAozR8ZEfIudREYsa-3UzRj12Krq_ap-jWnc9VF6txGarH1I_uIdRt2ITYhjhWLhay8ksXY-hP2YeF63M429cT9ufmx-_ru_r-1-3P6-_3tVcCx9phM1eekBwKFZQJpI0C1WoSrkHSaKDVxrjWcVRckVJGei_VQs9BUhvECbva6W6m-Tq0viwyuN5uhm7thiebXGf_7cRuaR_SoxXFF6mxCHzZCwzp7xTyaNdd9qHvXQxpylYjJ0HG8EJ-_o9cpWko3mwhLO6B1AW63EF-SDkPYfG6Cge7TcVuU7GHVMrEp7cXvPIvMRSg2gPbyYMcWYUWUcmmIBc7ZJXHNBwkFBE01IhnZy2bgA</recordid><startdate>20101228</startdate><enddate>20101228</enddate><creator>Villinger, Saskia</creator><creator>Briones, Rodolfo</creator><creator>Giller, Karin</creator><creator>Zachariae, Ulrich</creator><creator>Lange, Adam</creator><creator>de Groot, Bert L.</creator><creator>Griesinger, Christian</creator><creator>Becker, Stefan</creator><creator>Zweckstetter, Markus</creator><creator>Gouaux, Eric</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20101228</creationdate><title>Functional dynamics in the voltage-dependent anion channel</title><author>Villinger, Saskia ; Briones, Rodolfo ; Giller, Karin ; Zachariae, Ulrich ; Lange, Adam ; de Groot, Bert L. ; Griesinger, Christian ; Becker, Stefan ; Zweckstetter, Markus ; Gouaux, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Dicyclohexylcarbodiimide - chemistry</topic><topic>Dimyristoylphosphatidylcholine - chemistry</topic><topic>Humans</topic><topic>Ion Channel Gating - physiology</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mitochondrial Membranes - chemistry</topic><topic>Mitochondrial Membranes - metabolism</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular structure</topic><topic>Mutation, Missense</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>P branes</topic><topic>Principal components analysis</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Simulation</topic><topic>Solutions</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Time Factors</topic><topic>Voltage dependent anion channels</topic><topic>Voltage-Dependent Anion Channel 1 - chemistry</topic><topic>Voltage-Dependent Anion Channel 1 - genetics</topic><topic>Voltage-Dependent Anion Channel 1 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villinger, Saskia</creatorcontrib><creatorcontrib>Briones, Rodolfo</creatorcontrib><creatorcontrib>Giller, Karin</creatorcontrib><creatorcontrib>Zachariae, Ulrich</creatorcontrib><creatorcontrib>Lange, Adam</creatorcontrib><creatorcontrib>de Groot, Bert L.</creatorcontrib><creatorcontrib>Griesinger, Christian</creatorcontrib><creatorcontrib>Becker, Stefan</creatorcontrib><creatorcontrib>Zweckstetter, Markus</creatorcontrib><creatorcontrib>Gouaux, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villinger, Saskia</au><au>Briones, Rodolfo</au><au>Giller, Karin</au><au>Zachariae, Ulrich</au><au>Lange, Adam</au><au>de Groot, Bert L.</au><au>Griesinger, Christian</au><au>Becker, Stefan</au><au>Zweckstetter, Markus</au><au>Gouaux, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional dynamics in the voltage-dependent anion channel</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-12-28</date><risdate>2010</risdate><volume>107</volume><issue>52</issue><spage>22546</spage><epage>22551</epage><pages>22546-22551</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The voltage-dependent anion channel (VDAC), located in the outer mitochondrial membrane, acts as a gatekeeper for the entry and exit of mitochondrial metabolites. Here we reveal functional dynamics of isoform one of VDAC (VDAC1) by a combination of solution NMR spectroscopy, Gaussian network model analysis, and molecular dynamics simulation. Micro- to millisecond dynamics are significantly increased for the N-terminal six β-strands of VDAC1 in micellar solution, in agreement with increased B-factors observed in the same region in the bicellar crystal structure of VDAC1. Molecular dynamics simulations reveal that a charge on the membrane-facing glutamic acid 73 (E73) accounts for the elevation of N-terminal protein dynamics as well as a thinning of the nearby membrane. Mutation or chemical modification of E73 strongly reduces the micro- to millisecond dynamics in solution. Because E73 is necessary for hexokinase-I-induced VDAC channel closure and inhibition of apoptosis, our results imply that micro- to millisecond dynamics in the N-terminal part of the barrel are essential for VDAC interaction and gating.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>21148773</pmid><doi>10.1073/pnas.1012310108</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-12, Vol.107 (52), p.22546-22551 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_107_52_22546 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino acids Animals Apoptosis Biological Sciences Cells Crystal structure Crystallography, X-Ray Dicyclohexylcarbodiimide - chemistry Dimyristoylphosphatidylcholine - chemistry Humans Ion Channel Gating - physiology Ions Kinetics Lipid Bilayers - chemistry Lipid Bilayers - metabolism Lipids Magnetic Resonance Spectroscopy - methods Membrane proteins Membranes Mice Mitochondrial Membranes - chemistry Mitochondrial Membranes - metabolism Modeling Models, Molecular Molecular Dynamics Simulation Molecular structure Mutation, Missense NMR Nuclear magnetic resonance P branes Principal components analysis Protein Structure, Secondary Proteins Simulation Solutions Spectroscopy Spectrum analysis Time Factors Voltage dependent anion channels Voltage-Dependent Anion Channel 1 - chemistry Voltage-Dependent Anion Channel 1 - genetics Voltage-Dependent Anion Channel 1 - physiology |
title | Functional dynamics in the voltage-dependent anion channel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A47%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20dynamics%20in%20the%20voltage-dependent%20anion%20channel&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Villinger,%20Saskia&rft.date=2010-12-28&rft.volume=107&rft.issue=52&rft.spage=22546&rft.epage=22551&rft.pages=22546-22551&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1012310108&rft_dat=%3Cjstor_pnas_%3E25770676%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-a26b5c727a235e59e789505d873a6278290d899ada1251575594cc45f8b047de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=822095048&rft_id=info:pmid/21148773&rft_jstor_id=25770676&rfr_iscdi=true |