Loading…

Quaternary dynamics and plasticity underlie small heat shock protein chaperone function

Small Heat Shock Proteins (sHSPs) are a diverse family of molecular chaperones that prevent protein aggregation by binding clients destabilized during cellular stress. Here we probe the architecture and dynamics of complexes formed between an oligomeric sHSP and client by employing unique mass spect...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2010-02, Vol.107 (5), p.2007-2012
Main Authors: Stengel, Florian, Baldwin, Andrew J, Painter, Alexander J, Jaya, Nomalie, Basha, Eman, Kay, Lewis E, Vierling, Elizabeth, Robinson, Carol V, Benesch, Justin L.P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Small Heat Shock Proteins (sHSPs) are a diverse family of molecular chaperones that prevent protein aggregation by binding clients destabilized during cellular stress. Here we probe the architecture and dynamics of complexes formed between an oligomeric sHSP and client by employing unique mass spectrometry strategies. We observe over 300 different stoichiometries of interaction, demonstrating that an ensemble of structures underlies the protection these chaperones confer to unfolding clients. This astonishing heterogeneity not only makes the system quite distinct in behavior to ATP-dependent chaperones, but also renders it intractable by conventional structural biology approaches. We find that thermally regulated quaternary dynamics of the sHSP establish and maintain the plasticity of the system. This extends the paradigm that intrinsic dynamics are crucial to protein function to include equilibrium fluctuations in quaternary structure, and suggests they are integral to the sHSPs' role in the cellular protein homeostasis network.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.0910126107