Loading…
Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation
Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (45), p.E1009-E1018 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383 |
---|---|
cites | cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383 |
container_end_page | E1018 |
container_issue | 45 |
container_start_page | E1009 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 108 |
creator | Nilmeier, Jerome P Crooks, Gavin E Minh, David D. L Chodera, John D |
description | Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems. |
doi_str_mv | 10.1073/pnas.1106094108 |
format | article |
fullrecord | <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_45_E1009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1663565862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</originalsourceid><addsrcrecordid>eNp9kb1vFDEQxS1ERI5ATQcrGmg2GX-ut4mETgEiJVCQ1JbPayeOdu2L7UXiv8enO-5Ck8ZT-Ddv3sxD6B2GUwwdPVsHnU8xBgE9wyBfoAWGHreC9fASLQBI10pG2DF6nfMDAPRcwit0TAgQLmS3QDc_YrCPsx_9Kvl5aowOgx90sc11DPVd6jTGxudGh8Y65423oTQlxrFxMTVPW7Of5lEXH8MbdOT0mO3bXT1Bt18vbpbf26uf3y6XX65aw3tWWkw7suLGUEelWw2O404a56ywllDiwAyDAaOra-cIGMcHVpdzA-ZO0IFKeoLOt7rreTXZwVRrSY9qnfyk0x8VtVf__wR_r-7ib0UJ5kBxFfi4FYi5eJWNL9bcmxiCNUVh4LwDqNCn3ZQUH2ebi5p8NnYcdbBxzqqvSowT2lfy87MkFoJywaUgh8l79CHOKdRrbfR4nS14hc62kEkx52TdfjUMapO_2uSvDvnXjvdPL7Ln_wVegWYHbDoPclIxri5wvXVFPmwRp6PSd8lndfuLAGYAuHojkv4Fx_fAkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903510565</pqid></control><display><type>article</type><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><source>PubMed (Medline)</source><source>JSTOR</source><creator>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D</creator><creatorcontrib>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1106094108</identifier><identifier>PMID: 22025687</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Correlation analysis ; energy ; expanded ensembles ; Markov chain Monte Carlo ; MATHEMATICS AND COMPUTING ; Metropolis-Hastings ; Models, Theoretical ; molecular dynamics ; Monte Carlo Method ; Monte Carlo simulation ; Physical Sciences ; PNAS Plus ; probability ; Probability distribution ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.E1009-E1018</ispartof><rights>Copyright National Academy of Sciences Nov 8, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</citedby><cites>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215031/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215031/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22025687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1055700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilmeier, Jerome P</creatorcontrib><creatorcontrib>Crooks, Gavin E</creatorcontrib><creatorcontrib>Minh, David D. L</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</description><subject>Biological Sciences</subject><subject>Correlation analysis</subject><subject>energy</subject><subject>expanded ensembles</subject><subject>Markov chain Monte Carlo</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Metropolis-Hastings</subject><subject>Models, Theoretical</subject><subject>molecular dynamics</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>probability</subject><subject>Probability distribution</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kb1vFDEQxS1ERI5ATQcrGmg2GX-ut4mETgEiJVCQ1JbPayeOdu2L7UXiv8enO-5Ck8ZT-Ddv3sxD6B2GUwwdPVsHnU8xBgE9wyBfoAWGHreC9fASLQBI10pG2DF6nfMDAPRcwit0TAgQLmS3QDc_YrCPsx_9Kvl5aowOgx90sc11DPVd6jTGxudGh8Y65423oTQlxrFxMTVPW7Of5lEXH8MbdOT0mO3bXT1Bt18vbpbf26uf3y6XX65aw3tWWkw7suLGUEelWw2O404a56ywllDiwAyDAaOra-cIGMcHVpdzA-ZO0IFKeoLOt7rreTXZwVRrSY9qnfyk0x8VtVf__wR_r-7ib0UJ5kBxFfi4FYi5eJWNL9bcmxiCNUVh4LwDqNCn3ZQUH2ebi5p8NnYcdbBxzqqvSowT2lfy87MkFoJywaUgh8l79CHOKdRrbfR4nS14hc62kEkx52TdfjUMapO_2uSvDvnXjvdPL7Ln_wVegWYHbDoPclIxri5wvXVFPmwRp6PSd8lndfuLAGYAuHojkv4Fx_fAkA</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Nilmeier, Jerome P</creator><creator>Crooks, Gavin E</creator><creator>Minh, David D. L</creator><creator>Chodera, John D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20111108</creationdate><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><author>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Sciences</topic><topic>Correlation analysis</topic><topic>energy</topic><topic>expanded ensembles</topic><topic>Markov chain Monte Carlo</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Metropolis-Hastings</topic><topic>Models, Theoretical</topic><topic>molecular dynamics</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>probability</topic><topic>Probability distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilmeier, Jerome P</creatorcontrib><creatorcontrib>Crooks, Gavin E</creatorcontrib><creatorcontrib>Minh, David D. L</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilmeier, Jerome P</au><au>Crooks, Gavin E</au><au>Minh, David D. L</au><au>Chodera, John D</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>108</volume><issue>45</issue><spage>E1009</spage><epage>E1018</epage><pages>E1009-E1018</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22025687</pmid><doi>10.1073/pnas.1106094108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.E1009-E1018 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_108_45_E1009 |
source | PubMed (Medline); JSTOR |
subjects | Biological Sciences Correlation analysis energy expanded ensembles Markov chain Monte Carlo MATHEMATICS AND COMPUTING Metropolis-Hastings Models, Theoretical molecular dynamics Monte Carlo Method Monte Carlo simulation Physical Sciences PNAS Plus probability Probability distribution Thermodynamics |
title | Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20candidate%20Monte%20Carlo%20is%20an%20efficient%20tool%20for%20equilibrium%20simulation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nilmeier,%20Jerome%20P&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-11-08&rft.volume=108&rft.issue=45&rft.spage=E1009&rft.epage=E1018&rft.pages=E1009-E1018&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1106094108&rft_dat=%3Cproquest_pnas_%3E1663565862%3C/proquest_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=903510565&rft_id=info:pmid/22025687&rfr_iscdi=true |