Loading…

Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2011-11, Vol.108 (45), p.E1009-E1018
Main Authors: Nilmeier, Jerome P, Crooks, Gavin E, Minh, David D. L, Chodera, John D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383
cites cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383
container_end_page E1018
container_issue 45
container_start_page E1009
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 108
creator Nilmeier, Jerome P
Crooks, Gavin E
Minh, David D. L
Chodera, John D
description Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.
doi_str_mv 10.1073/pnas.1106094108
format article
fullrecord <record><control><sourceid>proquest_pnas_</sourceid><recordid>TN_cdi_pnas_primary_108_45_E1009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1663565862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</originalsourceid><addsrcrecordid>eNp9kb1vFDEQxS1ERI5ATQcrGmg2GX-ut4mETgEiJVCQ1JbPayeOdu2L7UXiv8enO-5Ck8ZT-Ddv3sxD6B2GUwwdPVsHnU8xBgE9wyBfoAWGHreC9fASLQBI10pG2DF6nfMDAPRcwit0TAgQLmS3QDc_YrCPsx_9Kvl5aowOgx90sc11DPVd6jTGxudGh8Y65423oTQlxrFxMTVPW7Of5lEXH8MbdOT0mO3bXT1Bt18vbpbf26uf3y6XX65aw3tWWkw7suLGUEelWw2O404a56ywllDiwAyDAaOra-cIGMcHVpdzA-ZO0IFKeoLOt7rreTXZwVRrSY9qnfyk0x8VtVf__wR_r-7ib0UJ5kBxFfi4FYi5eJWNL9bcmxiCNUVh4LwDqNCn3ZQUH2ebi5p8NnYcdbBxzqqvSowT2lfy87MkFoJywaUgh8l79CHOKdRrbfR4nS14hc62kEkx52TdfjUMapO_2uSvDvnXjvdPL7Ln_wVegWYHbDoPclIxri5wvXVFPmwRp6PSd8lndfuLAGYAuHojkv4Fx_fAkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903510565</pqid></control><display><type>article</type><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><source>PubMed (Medline)</source><source>JSTOR</source><creator>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D</creator><creatorcontrib>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1106094108</identifier><identifier>PMID: 22025687</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Correlation analysis ; energy ; expanded ensembles ; Markov chain Monte Carlo ; MATHEMATICS AND COMPUTING ; Metropolis-Hastings ; Models, Theoretical ; molecular dynamics ; Monte Carlo Method ; Monte Carlo simulation ; Physical Sciences ; PNAS Plus ; probability ; Probability distribution ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.E1009-E1018</ispartof><rights>Copyright National Academy of Sciences Nov 8, 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</citedby><cites>FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/108/45.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215031/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3215031/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22025687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1055700$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nilmeier, Jerome P</creatorcontrib><creatorcontrib>Crooks, Gavin E</creatorcontrib><creatorcontrib>Minh, David D. L</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</description><subject>Biological Sciences</subject><subject>Correlation analysis</subject><subject>energy</subject><subject>expanded ensembles</subject><subject>Markov chain Monte Carlo</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Metropolis-Hastings</subject><subject>Models, Theoretical</subject><subject>molecular dynamics</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>probability</subject><subject>Probability distribution</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kb1vFDEQxS1ERI5ATQcrGmg2GX-ut4mETgEiJVCQ1JbPayeOdu2L7UXiv8enO-5Ck8ZT-Ddv3sxD6B2GUwwdPVsHnU8xBgE9wyBfoAWGHreC9fASLQBI10pG2DF6nfMDAPRcwit0TAgQLmS3QDc_YrCPsx_9Kvl5aowOgx90sc11DPVd6jTGxudGh8Y65423oTQlxrFxMTVPW7Of5lEXH8MbdOT0mO3bXT1Bt18vbpbf26uf3y6XX65aw3tWWkw7suLGUEelWw2O404a56ywllDiwAyDAaOra-cIGMcHVpdzA-ZO0IFKeoLOt7rreTXZwVRrSY9qnfyk0x8VtVf__wR_r-7ib0UJ5kBxFfi4FYi5eJWNL9bcmxiCNUVh4LwDqNCn3ZQUH2ebi5p8NnYcdbBxzqqvSowT2lfy87MkFoJywaUgh8l79CHOKdRrbfR4nS14hc62kEkx52TdfjUMapO_2uSvDvnXjvdPL7Ln_wVegWYHbDoPclIxri5wvXVFPmwRp6PSd8lndfuLAGYAuHojkv4Fx_fAkA</recordid><startdate>20111108</startdate><enddate>20111108</enddate><creator>Nilmeier, Jerome P</creator><creator>Crooks, Gavin E</creator><creator>Minh, David D. L</creator><creator>Chodera, John D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>National Academy of Sciences, Washington, DC (United States)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20111108</creationdate><title>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</title><author>Nilmeier, Jerome P ; Crooks, Gavin E ; Minh, David D. L ; Chodera, John D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological Sciences</topic><topic>Correlation analysis</topic><topic>energy</topic><topic>expanded ensembles</topic><topic>Markov chain Monte Carlo</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Metropolis-Hastings</topic><topic>Models, Theoretical</topic><topic>molecular dynamics</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>probability</topic><topic>Probability distribution</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nilmeier, Jerome P</creatorcontrib><creatorcontrib>Crooks, Gavin E</creatorcontrib><creatorcontrib>Minh, David D. L</creatorcontrib><creatorcontrib>Chodera, John D</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nilmeier, Jerome P</au><au>Crooks, Gavin E</au><au>Minh, David D. L</au><au>Chodera, John D</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2011-11-08</date><risdate>2011</risdate><volume>108</volume><issue>45</issue><spage>E1009</spage><epage>E1018</epage><pages>E1009-E1018</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: Candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. Whereas generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22025687</pmid><doi>10.1073/pnas.1106094108</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2011-11, Vol.108 (45), p.E1009-E1018
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_108_45_E1009
source PubMed (Medline); JSTOR
subjects Biological Sciences
Correlation analysis
energy
expanded ensembles
Markov chain Monte Carlo
MATHEMATICS AND COMPUTING
Metropolis-Hastings
Models, Theoretical
molecular dynamics
Monte Carlo Method
Monte Carlo simulation
Physical Sciences
PNAS Plus
probability
Probability distribution
Thermodynamics
title Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonequilibrium%20candidate%20Monte%20Carlo%20is%20an%20efficient%20tool%20for%20equilibrium%20simulation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nilmeier,%20Jerome%20P&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2011-11-08&rft.volume=108&rft.issue=45&rft.spage=E1009&rft.epage=E1018&rft.pages=E1009-E1018&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1106094108&rft_dat=%3Cproquest_pnas_%3E1663565862%3C/proquest_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c594t-1372b5cc3f38fbdf5178cffe6ee232f0cddc0ca009ff20cf5d4091fd15f63d383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=903510565&rft_id=info:pmid/22025687&rfr_iscdi=true