Loading…
Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model
The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases vi...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (20), p.7859-7864 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643 |
---|---|
cites | cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643 |
container_end_page | 7864 |
container_issue | 20 |
container_start_page | 7859 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 109 |
creator | Lee, Michelle J Hatton, Beryl A Villavicencio, Elisabeth H Khanna, Paritosh C Friedman, Seth D Ditzler, Sally Pullar, Barbara Robison, Keith White, Kerry F Tunkey, Chris LeBlanc, Michael Randolph-Habecker, Julie Knoblaugh, Sue E Hansen, Stacey Richards, Andrew Wainwright, Brandon J McGovern, Karen Olson, James M |
description | The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors. |
doi_str_mv | 10.1073/pnas.1114718109 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_20_7859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41592761</jstor_id><sourcerecordid>41592761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhzAmIxKUc0s448delEqqArlQJJOjZchwn61USL3YC6r_H0S67wIWLR5p55tXMvM6ylwiXCLy82o06XiJixVEgyEfZKr1YsErC42wFQHghKlKdZc9i3AKApAKeZmeEUArI6Sqrb23T2Y3v8p2eNj_1Q-7Gjavd5EMedXCN7VydX6y_rAtJ2LtUNcHqaGPeu9bGnR5TKtf54Odo88E2c9_7utdx8sOSbWz_PHvS6j7aF4d4nt1__PDt5ra4-_xpffP-rjCUVFOSty1hRqJpALgRtm7aBhsjgbS15LxGWxNRlWlXoxsiiKWEtNjStuHUsqo8z673uru5ToMYO05B92oX3KDDg_Laqb8ro9uozv9QZUkZozQJXBwEgv8-2zipwUVj-16PNq2nsETKCCCI_6OAFWIpS5bQt_-gWz-HMV1iTzEEJhN1tadM8DEG2x7nRlCL1WqxWp2sTh2v_1z3yP_2NgFvDsDSeZKTioDigi4Sr_bENtkVjkiFVBLO8KTQaq90F1xU91_TAar0kwRyUZa_ANWWwdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014161069</pqid></control><display><type>article</type><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</creator><creatorcontrib>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</creatorcontrib><description>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114718109</identifier><identifier>PMID: 22550175</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>allografting ; Animal models ; Animals ; Antineoplastics ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; Base Sequence ; Biological Sciences ; Blotting, Western ; Brain ; Brain cancer ; Brain neoplasms ; Cancer ; Comparative Genomic Hybridization ; Cytotoxicity ; DNA Primers - genetics ; Donors ; Dosage ; Drug resistance ; Drug Resistance, Neoplasm ; drugs ; Flow Cytometry ; Gene Expression Profiling ; Genetic mutation ; Glycoproteins ; Hedgehog protein ; Homologous transplantation ; Immunohistochemistry ; Kruppel-Like Transcription Factors - genetics ; Life span ; longevity ; Magnetic Resonance Imaging ; Medulloblastoma ; Medulloblastoma - drug therapy ; Medulloblastoma - pathology ; Mice ; Molecular Sequence Data ; Molecules ; natural products ; neoplasms ; P-Glycoprotein ; patients ; Pilot Projects ; Point mutation ; Real-Time Polymerase Chain Reaction ; Receptors, G-Protein-Coupled - antagonists & inhibitors ; remission ; resistance mechanisms ; Rodents ; Sequence Analysis, DNA ; Signal transduction ; Signal Transduction - drug effects ; Smoothened Receptor ; Survival ; Survival Analysis ; Tumor burden ; Tumors ; Veratrum Alkaloids - pharmacology ; Veratrum Alkaloids - therapeutic use ; Zinc Finger Protein Gli2</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (20), p.7859-7864</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</citedby><cites>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41592761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41592761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22550175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Michelle J</creatorcontrib><creatorcontrib>Hatton, Beryl A</creatorcontrib><creatorcontrib>Villavicencio, Elisabeth H</creatorcontrib><creatorcontrib>Khanna, Paritosh C</creatorcontrib><creatorcontrib>Friedman, Seth D</creatorcontrib><creatorcontrib>Ditzler, Sally</creatorcontrib><creatorcontrib>Pullar, Barbara</creatorcontrib><creatorcontrib>Robison, Keith</creatorcontrib><creatorcontrib>White, Kerry F</creatorcontrib><creatorcontrib>Tunkey, Chris</creatorcontrib><creatorcontrib>LeBlanc, Michael</creatorcontrib><creatorcontrib>Randolph-Habecker, Julie</creatorcontrib><creatorcontrib>Knoblaugh, Sue E</creatorcontrib><creatorcontrib>Hansen, Stacey</creatorcontrib><creatorcontrib>Richards, Andrew</creatorcontrib><creatorcontrib>Wainwright, Brandon J</creatorcontrib><creatorcontrib>McGovern, Karen</creatorcontrib><creatorcontrib>Olson, James M</creatorcontrib><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</description><subject>allografting</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antineoplastics</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain neoplasms</subject><subject>Cancer</subject><subject>Comparative Genomic Hybridization</subject><subject>Cytotoxicity</subject><subject>DNA Primers - genetics</subject><subject>Donors</subject><subject>Dosage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>drugs</subject><subject>Flow Cytometry</subject><subject>Gene Expression Profiling</subject><subject>Genetic mutation</subject><subject>Glycoproteins</subject><subject>Hedgehog protein</subject><subject>Homologous transplantation</subject><subject>Immunohistochemistry</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Life span</subject><subject>longevity</subject><subject>Magnetic Resonance Imaging</subject><subject>Medulloblastoma</subject><subject>Medulloblastoma - drug therapy</subject><subject>Medulloblastoma - pathology</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>natural products</subject><subject>neoplasms</subject><subject>P-Glycoprotein</subject><subject>patients</subject><subject>Pilot Projects</subject><subject>Point mutation</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptors, G-Protein-Coupled - antagonists & inhibitors</subject><subject>remission</subject><subject>resistance mechanisms</subject><subject>Rodents</subject><subject>Sequence Analysis, DNA</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Smoothened Receptor</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Tumor burden</subject><subject>Tumors</subject><subject>Veratrum Alkaloids - pharmacology</subject><subject>Veratrum Alkaloids - therapeutic use</subject><subject>Zinc Finger Protein Gli2</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEokvhzAmIxKUc0s448delEqqArlQJJOjZchwn61USL3YC6r_H0S67wIWLR5p55tXMvM6ylwiXCLy82o06XiJixVEgyEfZKr1YsErC42wFQHghKlKdZc9i3AKApAKeZmeEUArI6Sqrb23T2Y3v8p2eNj_1Q-7Gjavd5EMedXCN7VydX6y_rAtJ2LtUNcHqaGPeu9bGnR5TKtf54Odo88E2c9_7utdx8sOSbWz_PHvS6j7aF4d4nt1__PDt5ra4-_xpffP-rjCUVFOSty1hRqJpALgRtm7aBhsjgbS15LxGWxNRlWlXoxsiiKWEtNjStuHUsqo8z673uru5ToMYO05B92oX3KDDg_Laqb8ro9uozv9QZUkZozQJXBwEgv8-2zipwUVj-16PNq2nsETKCCCI_6OAFWIpS5bQt_-gWz-HMV1iTzEEJhN1tadM8DEG2x7nRlCL1WqxWp2sTh2v_1z3yP_2NgFvDsDSeZKTioDigi4Sr_bENtkVjkiFVBLO8KTQaq90F1xU91_TAar0kwRyUZa_ANWWwdk</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Lee, Michelle J</creator><creator>Hatton, Beryl A</creator><creator>Villavicencio, Elisabeth H</creator><creator>Khanna, Paritosh C</creator><creator>Friedman, Seth D</creator><creator>Ditzler, Sally</creator><creator>Pullar, Barbara</creator><creator>Robison, Keith</creator><creator>White, Kerry F</creator><creator>Tunkey, Chris</creator><creator>LeBlanc, Michael</creator><creator>Randolph-Habecker, Julie</creator><creator>Knoblaugh, Sue E</creator><creator>Hansen, Stacey</creator><creator>Richards, Andrew</creator><creator>Wainwright, Brandon J</creator><creator>McGovern, Karen</creator><creator>Olson, James M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120515</creationdate><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><author>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>allografting</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antineoplastics</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain neoplasms</topic><topic>Cancer</topic><topic>Comparative Genomic Hybridization</topic><topic>Cytotoxicity</topic><topic>DNA Primers - genetics</topic><topic>Donors</topic><topic>Dosage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>drugs</topic><topic>Flow Cytometry</topic><topic>Gene Expression Profiling</topic><topic>Genetic mutation</topic><topic>Glycoproteins</topic><topic>Hedgehog protein</topic><topic>Homologous transplantation</topic><topic>Immunohistochemistry</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Life span</topic><topic>longevity</topic><topic>Magnetic Resonance Imaging</topic><topic>Medulloblastoma</topic><topic>Medulloblastoma - drug therapy</topic><topic>Medulloblastoma - pathology</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>natural products</topic><topic>neoplasms</topic><topic>P-Glycoprotein</topic><topic>patients</topic><topic>Pilot Projects</topic><topic>Point mutation</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptors, G-Protein-Coupled - antagonists & inhibitors</topic><topic>remission</topic><topic>resistance mechanisms</topic><topic>Rodents</topic><topic>Sequence Analysis, DNA</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Smoothened Receptor</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Tumor burden</topic><topic>Tumors</topic><topic>Veratrum Alkaloids - pharmacology</topic><topic>Veratrum Alkaloids - therapeutic use</topic><topic>Zinc Finger Protein Gli2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Michelle J</creatorcontrib><creatorcontrib>Hatton, Beryl A</creatorcontrib><creatorcontrib>Villavicencio, Elisabeth H</creatorcontrib><creatorcontrib>Khanna, Paritosh C</creatorcontrib><creatorcontrib>Friedman, Seth D</creatorcontrib><creatorcontrib>Ditzler, Sally</creatorcontrib><creatorcontrib>Pullar, Barbara</creatorcontrib><creatorcontrib>Robison, Keith</creatorcontrib><creatorcontrib>White, Kerry F</creatorcontrib><creatorcontrib>Tunkey, Chris</creatorcontrib><creatorcontrib>LeBlanc, Michael</creatorcontrib><creatorcontrib>Randolph-Habecker, Julie</creatorcontrib><creatorcontrib>Knoblaugh, Sue E</creatorcontrib><creatorcontrib>Hansen, Stacey</creatorcontrib><creatorcontrib>Richards, Andrew</creatorcontrib><creatorcontrib>Wainwright, Brandon J</creatorcontrib><creatorcontrib>McGovern, Karen</creatorcontrib><creatorcontrib>Olson, James M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Michelle J</au><au>Hatton, Beryl A</au><au>Villavicencio, Elisabeth H</au><au>Khanna, Paritosh C</au><au>Friedman, Seth D</au><au>Ditzler, Sally</au><au>Pullar, Barbara</au><au>Robison, Keith</au><au>White, Kerry F</au><au>Tunkey, Chris</au><au>LeBlanc, Michael</au><au>Randolph-Habecker, Julie</au><au>Knoblaugh, Sue E</au><au>Hansen, Stacey</au><au>Richards, Andrew</au><au>Wainwright, Brandon J</au><au>McGovern, Karen</au><au>Olson, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>109</volume><issue>20</issue><spage>7859</spage><epage>7864</epage><pages>7859-7864</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22550175</pmid><doi>10.1073/pnas.1114718109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (20), p.7859-7864 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_109_20_7859 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | allografting Animal models Animals Antineoplastics ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism Base Sequence Biological Sciences Blotting, Western Brain Brain cancer Brain neoplasms Cancer Comparative Genomic Hybridization Cytotoxicity DNA Primers - genetics Donors Dosage Drug resistance Drug Resistance, Neoplasm drugs Flow Cytometry Gene Expression Profiling Genetic mutation Glycoproteins Hedgehog protein Homologous transplantation Immunohistochemistry Kruppel-Like Transcription Factors - genetics Life span longevity Magnetic Resonance Imaging Medulloblastoma Medulloblastoma - drug therapy Medulloblastoma - pathology Mice Molecular Sequence Data Molecules natural products neoplasms P-Glycoprotein patients Pilot Projects Point mutation Real-Time Polymerase Chain Reaction Receptors, G-Protein-Coupled - antagonists & inhibitors remission resistance mechanisms Rodents Sequence Analysis, DNA Signal transduction Signal Transduction - drug effects Smoothened Receptor Survival Survival Analysis Tumor burden Tumors Veratrum Alkaloids - pharmacology Veratrum Alkaloids - therapeutic use Zinc Finger Protein Gli2 |
title | Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hedgehog%20pathway%20inhibitor%20saridegib%20(IPI-926)%20increases%20lifespan%20in%20a%20mouse%20medulloblastoma%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Michelle%20J&rft.date=2012-05-15&rft.volume=109&rft.issue=20&rft.spage=7859&rft.epage=7864&rft.pages=7859-7864&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114718109&rft_dat=%3Cjstor_pnas_%3E41592761%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1014161069&rft_id=info:pmid/22550175&rft_jstor_id=41592761&rfr_iscdi=true |