Loading…

Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model

The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases vi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2012-05, Vol.109 (20), p.7859-7864
Main Authors: Lee, Michelle J, Hatton, Beryl A, Villavicencio, Elisabeth H, Khanna, Paritosh C, Friedman, Seth D, Ditzler, Sally, Pullar, Barbara, Robison, Keith, White, Kerry F, Tunkey, Chris, LeBlanc, Michael, Randolph-Habecker, Julie, Knoblaugh, Sue E, Hansen, Stacey, Richards, Andrew, Wainwright, Brandon J, McGovern, Karen, Olson, James M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643
cites cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643
container_end_page 7864
container_issue 20
container_start_page 7859
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 109
creator Lee, Michelle J
Hatton, Beryl A
Villavicencio, Elisabeth H
Khanna, Paritosh C
Friedman, Seth D
Ditzler, Sally
Pullar, Barbara
Robison, Keith
White, Kerry F
Tunkey, Chris
LeBlanc, Michael
Randolph-Habecker, Julie
Knoblaugh, Sue E
Hansen, Stacey
Richards, Andrew
Wainwright, Brandon J
McGovern, Karen
Olson, James M
description The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.
doi_str_mv 10.1073/pnas.1114718109
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_109_20_7859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41592761</jstor_id><sourcerecordid>41592761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhzAmIxKUc0s448delEqqArlQJJOjZchwn61USL3YC6r_H0S67wIWLR5p55tXMvM6ylwiXCLy82o06XiJixVEgyEfZKr1YsErC42wFQHghKlKdZc9i3AKApAKeZmeEUArI6Sqrb23T2Y3v8p2eNj_1Q-7Gjavd5EMedXCN7VydX6y_rAtJ2LtUNcHqaGPeu9bGnR5TKtf54Odo88E2c9_7utdx8sOSbWz_PHvS6j7aF4d4nt1__PDt5ra4-_xpffP-rjCUVFOSty1hRqJpALgRtm7aBhsjgbS15LxGWxNRlWlXoxsiiKWEtNjStuHUsqo8z673uru5ToMYO05B92oX3KDDg_Laqb8ro9uozv9QZUkZozQJXBwEgv8-2zipwUVj-16PNq2nsETKCCCI_6OAFWIpS5bQt_-gWz-HMV1iTzEEJhN1tadM8DEG2x7nRlCL1WqxWp2sTh2v_1z3yP_2NgFvDsDSeZKTioDigi4Sr_bENtkVjkiFVBLO8KTQaq90F1xU91_TAar0kwRyUZa_ANWWwdk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1014161069</pqid></control><display><type>article</type><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</creator><creatorcontrib>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</creatorcontrib><description>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1114718109</identifier><identifier>PMID: 22550175</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>allografting ; Animal models ; Animals ; Antineoplastics ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; Base Sequence ; Biological Sciences ; Blotting, Western ; Brain ; Brain cancer ; Brain neoplasms ; Cancer ; Comparative Genomic Hybridization ; Cytotoxicity ; DNA Primers - genetics ; Donors ; Dosage ; Drug resistance ; Drug Resistance, Neoplasm ; drugs ; Flow Cytometry ; Gene Expression Profiling ; Genetic mutation ; Glycoproteins ; Hedgehog protein ; Homologous transplantation ; Immunohistochemistry ; Kruppel-Like Transcription Factors - genetics ; Life span ; longevity ; Magnetic Resonance Imaging ; Medulloblastoma ; Medulloblastoma - drug therapy ; Medulloblastoma - pathology ; Mice ; Molecular Sequence Data ; Molecules ; natural products ; neoplasms ; P-Glycoprotein ; patients ; Pilot Projects ; Point mutation ; Real-Time Polymerase Chain Reaction ; Receptors, G-Protein-Coupled - antagonists &amp; inhibitors ; remission ; resistance mechanisms ; Rodents ; Sequence Analysis, DNA ; Signal transduction ; Signal Transduction - drug effects ; Smoothened Receptor ; Survival ; Survival Analysis ; Tumor burden ; Tumors ; Veratrum Alkaloids - pharmacology ; Veratrum Alkaloids - therapeutic use ; Zinc Finger Protein Gli2</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (20), p.7859-7864</ispartof><rights>copyright © 1993-2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 15, 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</citedby><cites>FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/109/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41592761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41592761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22550175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Michelle J</creatorcontrib><creatorcontrib>Hatton, Beryl A</creatorcontrib><creatorcontrib>Villavicencio, Elisabeth H</creatorcontrib><creatorcontrib>Khanna, Paritosh C</creatorcontrib><creatorcontrib>Friedman, Seth D</creatorcontrib><creatorcontrib>Ditzler, Sally</creatorcontrib><creatorcontrib>Pullar, Barbara</creatorcontrib><creatorcontrib>Robison, Keith</creatorcontrib><creatorcontrib>White, Kerry F</creatorcontrib><creatorcontrib>Tunkey, Chris</creatorcontrib><creatorcontrib>LeBlanc, Michael</creatorcontrib><creatorcontrib>Randolph-Habecker, Julie</creatorcontrib><creatorcontrib>Knoblaugh, Sue E</creatorcontrib><creatorcontrib>Hansen, Stacey</creatorcontrib><creatorcontrib>Richards, Andrew</creatorcontrib><creatorcontrib>Wainwright, Brandon J</creatorcontrib><creatorcontrib>McGovern, Karen</creatorcontrib><creatorcontrib>Olson, James M</creatorcontrib><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</description><subject>allografting</subject><subject>Animal models</subject><subject>Animals</subject><subject>Antineoplastics</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>Base Sequence</subject><subject>Biological Sciences</subject><subject>Blotting, Western</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain neoplasms</subject><subject>Cancer</subject><subject>Comparative Genomic Hybridization</subject><subject>Cytotoxicity</subject><subject>DNA Primers - genetics</subject><subject>Donors</subject><subject>Dosage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>drugs</subject><subject>Flow Cytometry</subject><subject>Gene Expression Profiling</subject><subject>Genetic mutation</subject><subject>Glycoproteins</subject><subject>Hedgehog protein</subject><subject>Homologous transplantation</subject><subject>Immunohistochemistry</subject><subject>Kruppel-Like Transcription Factors - genetics</subject><subject>Life span</subject><subject>longevity</subject><subject>Magnetic Resonance Imaging</subject><subject>Medulloblastoma</subject><subject>Medulloblastoma - drug therapy</subject><subject>Medulloblastoma - pathology</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>natural products</subject><subject>neoplasms</subject><subject>P-Glycoprotein</subject><subject>patients</subject><subject>Pilot Projects</subject><subject>Point mutation</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</subject><subject>remission</subject><subject>resistance mechanisms</subject><subject>Rodents</subject><subject>Sequence Analysis, DNA</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Smoothened Receptor</subject><subject>Survival</subject><subject>Survival Analysis</subject><subject>Tumor burden</subject><subject>Tumors</subject><subject>Veratrum Alkaloids - pharmacology</subject><subject>Veratrum Alkaloids - therapeutic use</subject><subject>Zinc Finger Protein Gli2</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEokvhzAmIxKUc0s448delEqqArlQJJOjZchwn61USL3YC6r_H0S67wIWLR5p55tXMvM6ylwiXCLy82o06XiJixVEgyEfZKr1YsErC42wFQHghKlKdZc9i3AKApAKeZmeEUArI6Sqrb23T2Y3v8p2eNj_1Q-7Gjavd5EMedXCN7VydX6y_rAtJ2LtUNcHqaGPeu9bGnR5TKtf54Odo88E2c9_7utdx8sOSbWz_PHvS6j7aF4d4nt1__PDt5ra4-_xpffP-rjCUVFOSty1hRqJpALgRtm7aBhsjgbS15LxGWxNRlWlXoxsiiKWEtNjStuHUsqo8z673uru5ToMYO05B92oX3KDDg_Laqb8ro9uozv9QZUkZozQJXBwEgv8-2zipwUVj-16PNq2nsETKCCCI_6OAFWIpS5bQt_-gWz-HMV1iTzEEJhN1tadM8DEG2x7nRlCL1WqxWp2sTh2v_1z3yP_2NgFvDsDSeZKTioDigi4Sr_bENtkVjkiFVBLO8KTQaq90F1xU91_TAar0kwRyUZa_ANWWwdk</recordid><startdate>20120515</startdate><enddate>20120515</enddate><creator>Lee, Michelle J</creator><creator>Hatton, Beryl A</creator><creator>Villavicencio, Elisabeth H</creator><creator>Khanna, Paritosh C</creator><creator>Friedman, Seth D</creator><creator>Ditzler, Sally</creator><creator>Pullar, Barbara</creator><creator>Robison, Keith</creator><creator>White, Kerry F</creator><creator>Tunkey, Chris</creator><creator>LeBlanc, Michael</creator><creator>Randolph-Habecker, Julie</creator><creator>Knoblaugh, Sue E</creator><creator>Hansen, Stacey</creator><creator>Richards, Andrew</creator><creator>Wainwright, Brandon J</creator><creator>McGovern, Karen</creator><creator>Olson, James M</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120515</creationdate><title>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</title><author>Lee, Michelle J ; Hatton, Beryl A ; Villavicencio, Elisabeth H ; Khanna, Paritosh C ; Friedman, Seth D ; Ditzler, Sally ; Pullar, Barbara ; Robison, Keith ; White, Kerry F ; Tunkey, Chris ; LeBlanc, Michael ; Randolph-Habecker, Julie ; Knoblaugh, Sue E ; Hansen, Stacey ; Richards, Andrew ; Wainwright, Brandon J ; McGovern, Karen ; Olson, James M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>allografting</topic><topic>Animal models</topic><topic>Animals</topic><topic>Antineoplastics</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>Base Sequence</topic><topic>Biological Sciences</topic><topic>Blotting, Western</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain neoplasms</topic><topic>Cancer</topic><topic>Comparative Genomic Hybridization</topic><topic>Cytotoxicity</topic><topic>DNA Primers - genetics</topic><topic>Donors</topic><topic>Dosage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>drugs</topic><topic>Flow Cytometry</topic><topic>Gene Expression Profiling</topic><topic>Genetic mutation</topic><topic>Glycoproteins</topic><topic>Hedgehog protein</topic><topic>Homologous transplantation</topic><topic>Immunohistochemistry</topic><topic>Kruppel-Like Transcription Factors - genetics</topic><topic>Life span</topic><topic>longevity</topic><topic>Magnetic Resonance Imaging</topic><topic>Medulloblastoma</topic><topic>Medulloblastoma - drug therapy</topic><topic>Medulloblastoma - pathology</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>natural products</topic><topic>neoplasms</topic><topic>P-Glycoprotein</topic><topic>patients</topic><topic>Pilot Projects</topic><topic>Point mutation</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Receptors, G-Protein-Coupled - antagonists &amp; inhibitors</topic><topic>remission</topic><topic>resistance mechanisms</topic><topic>Rodents</topic><topic>Sequence Analysis, DNA</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Smoothened Receptor</topic><topic>Survival</topic><topic>Survival Analysis</topic><topic>Tumor burden</topic><topic>Tumors</topic><topic>Veratrum Alkaloids - pharmacology</topic><topic>Veratrum Alkaloids - therapeutic use</topic><topic>Zinc Finger Protein Gli2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Michelle J</creatorcontrib><creatorcontrib>Hatton, Beryl A</creatorcontrib><creatorcontrib>Villavicencio, Elisabeth H</creatorcontrib><creatorcontrib>Khanna, Paritosh C</creatorcontrib><creatorcontrib>Friedman, Seth D</creatorcontrib><creatorcontrib>Ditzler, Sally</creatorcontrib><creatorcontrib>Pullar, Barbara</creatorcontrib><creatorcontrib>Robison, Keith</creatorcontrib><creatorcontrib>White, Kerry F</creatorcontrib><creatorcontrib>Tunkey, Chris</creatorcontrib><creatorcontrib>LeBlanc, Michael</creatorcontrib><creatorcontrib>Randolph-Habecker, Julie</creatorcontrib><creatorcontrib>Knoblaugh, Sue E</creatorcontrib><creatorcontrib>Hansen, Stacey</creatorcontrib><creatorcontrib>Richards, Andrew</creatorcontrib><creatorcontrib>Wainwright, Brandon J</creatorcontrib><creatorcontrib>McGovern, Karen</creatorcontrib><creatorcontrib>Olson, James M</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Michelle J</au><au>Hatton, Beryl A</au><au>Villavicencio, Elisabeth H</au><au>Khanna, Paritosh C</au><au>Friedman, Seth D</au><au>Ditzler, Sally</au><au>Pullar, Barbara</au><au>Robison, Keith</au><au>White, Kerry F</au><au>Tunkey, Chris</au><au>LeBlanc, Michael</au><au>Randolph-Habecker, Julie</au><au>Knoblaugh, Sue E</au><au>Hansen, Stacey</au><au>Richards, Andrew</au><au>Wainwright, Brandon J</au><au>McGovern, Karen</au><au>Olson, James M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2012-05-15</date><risdate>2012</risdate><volume>109</volume><issue>20</issue><spage>7859</spage><epage>7864</epage><pages>7859-7864</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>22550175</pmid><doi>10.1073/pnas.1114718109</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2012-05, Vol.109 (20), p.7859-7864
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_109_20_7859
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects allografting
Animal models
Animals
Antineoplastics
ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism
Base Sequence
Biological Sciences
Blotting, Western
Brain
Brain cancer
Brain neoplasms
Cancer
Comparative Genomic Hybridization
Cytotoxicity
DNA Primers - genetics
Donors
Dosage
Drug resistance
Drug Resistance, Neoplasm
drugs
Flow Cytometry
Gene Expression Profiling
Genetic mutation
Glycoproteins
Hedgehog protein
Homologous transplantation
Immunohistochemistry
Kruppel-Like Transcription Factors - genetics
Life span
longevity
Magnetic Resonance Imaging
Medulloblastoma
Medulloblastoma - drug therapy
Medulloblastoma - pathology
Mice
Molecular Sequence Data
Molecules
natural products
neoplasms
P-Glycoprotein
patients
Pilot Projects
Point mutation
Real-Time Polymerase Chain Reaction
Receptors, G-Protein-Coupled - antagonists & inhibitors
remission
resistance mechanisms
Rodents
Sequence Analysis, DNA
Signal transduction
Signal Transduction - drug effects
Smoothened Receptor
Survival
Survival Analysis
Tumor burden
Tumors
Veratrum Alkaloids - pharmacology
Veratrum Alkaloids - therapeutic use
Zinc Finger Protein Gli2
title Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hedgehog%20pathway%20inhibitor%20saridegib%20(IPI-926)%20increases%20lifespan%20in%20a%20mouse%20medulloblastoma%20model&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Lee,%20Michelle%20J&rft.date=2012-05-15&rft.volume=109&rft.issue=20&rft.spage=7859&rft.epage=7864&rft.pages=7859-7864&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1114718109&rft_dat=%3Cjstor_pnas_%3E41592761%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c524t-92ef26c91cd007c8ebdfd1dc902fb977b1eb2843147cad282e522f1f5fd75e643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1014161069&rft_id=info:pmid/22550175&rft_jstor_id=41592761&rfr_iscdi=true