Loading…
Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes
Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytoso...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (51), p.20491-20496 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3 |
container_end_page | 20496 |
container_issue | 51 |
container_start_page | 20491 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Pope, Christopher R. De Feo, Christopher J. Unger, Vinzenz M. |
description | Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition. |
doi_str_mv | 10.1073/pnas.1309820110 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_51_20491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23761581</jstor_id><sourcerecordid>23761581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</originalsourceid><addsrcrecordid>eNpdkUuPFCEUhYnROO3o2pVK4sZNzVweXcDGxHR8JZO40Fm4IlBAS6eqaKGq4_x7qXTbo64gud85cO5B6DmBKwKCXe9HU64IAyUpEAIP0IqAIk3LFTxEKwAqGskpv0BPStkBgFpLeIwuKKdKKMpW6PvG9_3cm4xdLFOOdp5iGnEKuEv7vc94SrjM9ZJ-RecXaJgnUzyO4yH1B19w6UwIqXdx3GJ7hwc_2GxGX56iR8H0xT87nZfo9sP7b5tPzc2Xj583726ajis6Naq1QlLqBLeMeSapo771NvhgpRCUOBMcAFGhU0atDQ3cWdtJp5QxAtqOXaK3R9_9bAfvOj9O2fR6n-Ng8p1OJup_J2P8obfpoJms-pZWgzcng5x-zr5Meoilq2upKdJcNOGtajmRUlT09X_oLs15rPEqJYgiQoKq1PWR6nIqJftw_gwBvdSml9r0fW1V8fLvDGf-T08VwCdgUZ7tqt-aaApckYq8OCK7MqV8b8FES9Zymb86zoNJ2mxzLPr2a32-rdvlFJhivwFkA7Oc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471917809</pqid></control><display><type>article</type><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</creator><creatorcontrib>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</creatorcontrib><description>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1309820110</identifier><identifier>PMID: 24297923</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biological Transport, Active - physiology ; Cell membranes ; Copper ; Copper - metabolism ; Cytosol - metabolism ; Enzyme Activation - physiology ; Freight ; Genetic Complementation Test ; Humans ; Intracellular Membranes - metabolism ; Lipid Bilayers - metabolism ; Lipids ; Liposomes ; Membranes ; Microbiology ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; P branes ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Superoxides ; T tests ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20491-20496</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 17, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</citedby><cites>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23761581$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23761581$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24297923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pope, Christopher R.</creatorcontrib><creatorcontrib>De Feo, Christopher J.</creatorcontrib><creatorcontrib>Unger, Vinzenz M.</creatorcontrib><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</description><subject>Biological Sciences</subject><subject>Biological Transport, Active - physiology</subject><subject>Cell membranes</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Cytosol - metabolism</subject><subject>Enzyme Activation - physiology</subject><subject>Freight</subject><subject>Genetic Complementation Test</subject><subject>Humans</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Membranes</subject><subject>Microbiology</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>P branes</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Superoxides</subject><subject>T tests</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkUuPFCEUhYnROO3o2pVK4sZNzVweXcDGxHR8JZO40Fm4IlBAS6eqaKGq4_x7qXTbo64gud85cO5B6DmBKwKCXe9HU64IAyUpEAIP0IqAIk3LFTxEKwAqGskpv0BPStkBgFpLeIwuKKdKKMpW6PvG9_3cm4xdLFOOdp5iGnEKuEv7vc94SrjM9ZJ-RecXaJgnUzyO4yH1B19w6UwIqXdx3GJ7hwc_2GxGX56iR8H0xT87nZfo9sP7b5tPzc2Xj583726ajis6Naq1QlLqBLeMeSapo771NvhgpRCUOBMcAFGhU0atDQ3cWdtJp5QxAtqOXaK3R9_9bAfvOj9O2fR6n-Ng8p1OJup_J2P8obfpoJms-pZWgzcng5x-zr5Meoilq2upKdJcNOGtajmRUlT09X_oLs15rPEqJYgiQoKq1PWR6nIqJftw_gwBvdSml9r0fW1V8fLvDGf-T08VwCdgUZ7tqt-aaApckYq8OCK7MqV8b8FES9Zymb86zoNJ2mxzLPr2a32-rdvlFJhivwFkA7Oc</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Pope, Christopher R.</creator><creator>De Feo, Christopher J.</creator><creator>Unger, Vinzenz M.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131217</creationdate><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><author>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Biological Transport, Active - physiology</topic><topic>Cell membranes</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Cytosol - metabolism</topic><topic>Enzyme Activation - physiology</topic><topic>Freight</topic><topic>Genetic Complementation Test</topic><topic>Humans</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Membranes</topic><topic>Microbiology</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>P branes</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Superoxides</topic><topic>T tests</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pope, Christopher R.</creatorcontrib><creatorcontrib>De Feo, Christopher J.</creatorcontrib><creatorcontrib>Unger, Vinzenz M.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pope, Christopher R.</au><au>De Feo, Christopher J.</au><au>Unger, Vinzenz M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>110</volume><issue>51</issue><spage>20491</spage><epage>20496</epage><pages>20491-20496</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24297923</pmid><doi>10.1073/pnas.1309820110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20491-20496 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_110_51_20491 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Biological Sciences Biological Transport, Active - physiology Cell membranes Copper Copper - metabolism Cytosol - metabolism Enzyme Activation - physiology Freight Genetic Complementation Test Humans Intracellular Membranes - metabolism Lipid Bilayers - metabolism Lipids Liposomes Membranes Microbiology Molecular Chaperones - genetics Molecular Chaperones - metabolism P branes Proteins Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Superoxide Dismutase-1 Superoxides T tests Yeast Yeasts |
title | Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20distribution%20of%20copper%20to%20superoxide%20dismutase%20involves%20scaffolding%20by%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pope,%20Christopher%20R.&rft.date=2013-12-17&rft.volume=110&rft.issue=51&rft.spage=20491&rft.epage=20496&rft.pages=20491-20496&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1309820110&rft_dat=%3Cjstor_pnas_%3E23761581%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471917809&rft_id=info:pmid/24297923&rft_jstor_id=23761581&rfr_iscdi=true |