Loading…

Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes

Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytoso...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (51), p.20491-20496
Main Authors: Pope, Christopher R., De Feo, Christopher J., Unger, Vinzenz M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3
cites cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3
container_end_page 20496
container_issue 51
container_start_page 20491
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Pope, Christopher R.
De Feo, Christopher J.
Unger, Vinzenz M.
description Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.
doi_str_mv 10.1073/pnas.1309820110
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_110_51_20491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23761581</jstor_id><sourcerecordid>23761581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</originalsourceid><addsrcrecordid>eNpdkUuPFCEUhYnROO3o2pVK4sZNzVweXcDGxHR8JZO40Fm4IlBAS6eqaKGq4_x7qXTbo64gud85cO5B6DmBKwKCXe9HU64IAyUpEAIP0IqAIk3LFTxEKwAqGskpv0BPStkBgFpLeIwuKKdKKMpW6PvG9_3cm4xdLFOOdp5iGnEKuEv7vc94SrjM9ZJ-RecXaJgnUzyO4yH1B19w6UwIqXdx3GJ7hwc_2GxGX56iR8H0xT87nZfo9sP7b5tPzc2Xj583726ajis6Naq1QlLqBLeMeSapo771NvhgpRCUOBMcAFGhU0atDQ3cWdtJp5QxAtqOXaK3R9_9bAfvOj9O2fR6n-Ng8p1OJup_J2P8obfpoJms-pZWgzcng5x-zr5Meoilq2upKdJcNOGtajmRUlT09X_oLs15rPEqJYgiQoKq1PWR6nIqJftw_gwBvdSml9r0fW1V8fLvDGf-T08VwCdgUZ7tqt-aaApckYq8OCK7MqV8b8FES9Zymb86zoNJ2mxzLPr2a32-rdvlFJhivwFkA7Oc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471917809</pqid></control><display><type>article</type><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</creator><creatorcontrib>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</creatorcontrib><description>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1309820110</identifier><identifier>PMID: 24297923</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biological Transport, Active - physiology ; Cell membranes ; Copper ; Copper - metabolism ; Cytosol - metabolism ; Enzyme Activation - physiology ; Freight ; Genetic Complementation Test ; Humans ; Intracellular Membranes - metabolism ; Lipid Bilayers - metabolism ; Lipids ; Liposomes ; Membranes ; Microbiology ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; P branes ; Proteins ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxide Dismutase-1 ; Superoxides ; T tests ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20491-20496</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 17, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</citedby><cites>FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23761581$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23761581$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24297923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pope, Christopher R.</creatorcontrib><creatorcontrib>De Feo, Christopher J.</creatorcontrib><creatorcontrib>Unger, Vinzenz M.</creatorcontrib><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</description><subject>Biological Sciences</subject><subject>Biological Transport, Active - physiology</subject><subject>Cell membranes</subject><subject>Copper</subject><subject>Copper - metabolism</subject><subject>Cytosol - metabolism</subject><subject>Enzyme Activation - physiology</subject><subject>Freight</subject><subject>Genetic Complementation Test</subject><subject>Humans</subject><subject>Intracellular Membranes - metabolism</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Liposomes</subject><subject>Membranes</subject><subject>Microbiology</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>P branes</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxide Dismutase-1</subject><subject>Superoxides</subject><subject>T tests</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkUuPFCEUhYnROO3o2pVK4sZNzVweXcDGxHR8JZO40Fm4IlBAS6eqaKGq4_x7qXTbo64gud85cO5B6DmBKwKCXe9HU64IAyUpEAIP0IqAIk3LFTxEKwAqGskpv0BPStkBgFpLeIwuKKdKKMpW6PvG9_3cm4xdLFOOdp5iGnEKuEv7vc94SrjM9ZJ-RecXaJgnUzyO4yH1B19w6UwIqXdx3GJ7hwc_2GxGX56iR8H0xT87nZfo9sP7b5tPzc2Xj583726ajis6Naq1QlLqBLeMeSapo771NvhgpRCUOBMcAFGhU0atDQ3cWdtJp5QxAtqOXaK3R9_9bAfvOj9O2fR6n-Ng8p1OJup_J2P8obfpoJms-pZWgzcng5x-zr5Meoilq2upKdJcNOGtajmRUlT09X_oLs15rPEqJYgiQoKq1PWR6nIqJftw_gwBvdSml9r0fW1V8fLvDGf-T08VwCdgUZ7tqt-aaApckYq8OCK7MqV8b8FES9Zymb86zoNJ2mxzLPr2a32-rdvlFJhivwFkA7Oc</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Pope, Christopher R.</creator><creator>De Feo, Christopher J.</creator><creator>Unger, Vinzenz M.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131217</creationdate><title>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</title><author>Pope, Christopher R. ; De Feo, Christopher J. ; Unger, Vinzenz M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Biological Transport, Active - physiology</topic><topic>Cell membranes</topic><topic>Copper</topic><topic>Copper - metabolism</topic><topic>Cytosol - metabolism</topic><topic>Enzyme Activation - physiology</topic><topic>Freight</topic><topic>Genetic Complementation Test</topic><topic>Humans</topic><topic>Intracellular Membranes - metabolism</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Liposomes</topic><topic>Membranes</topic><topic>Microbiology</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>P branes</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxide Dismutase-1</topic><topic>Superoxides</topic><topic>T tests</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pope, Christopher R.</creatorcontrib><creatorcontrib>De Feo, Christopher J.</creatorcontrib><creatorcontrib>Unger, Vinzenz M.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pope, Christopher R.</au><au>De Feo, Christopher J.</au><au>Unger, Vinzenz M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>110</volume><issue>51</issue><spage>20491</spage><epage>20496</epage><pages>20491-20496</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Efficient delivery of copper ions to specific intracellular targets requires copper chaperones that acquire metal cargo through unknown mechanisms. Here we demonstrate that the human and yeast copper chaperones (CCS) for superoxide dismutase 1 (SOD1), long thought to exclusively reside in the cytosol and mitochondrial intermembrane space, can engage negatively charged bilayers through a positively charged lipid-binding interface. The significance of this membrane-binding interface is established through SOD1 activity and genetic complementation studies in Saccharomyces cerevisiae , showing that recruitment of CCS to the membrane is required for activation of SOD1. Moreover, we show that a CCS:SOD1 complex binds to bilayers in vitro and that CCS can interact with human high affinity copper transporter 1. Shifting current paradigms, we propose that CCS-dependent copper acquisition and distribution largely occur at membrane interfaces and that this emerging role of the bilayer may reflect a general mechanistic aspect of cellular transition metal ion acquisition.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24297923</pmid><doi>10.1073/pnas.1309820110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (51), p.20491-20496
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_110_51_20491
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Biological Sciences
Biological Transport, Active - physiology
Cell membranes
Copper
Copper - metabolism
Cytosol - metabolism
Enzyme Activation - physiology
Freight
Genetic Complementation Test
Humans
Intracellular Membranes - metabolism
Lipid Bilayers - metabolism
Lipids
Liposomes
Membranes
Microbiology
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
P branes
Proteins
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
Superoxide Dismutase-1
Superoxides
T tests
Yeast
Yeasts
title Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A45%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20distribution%20of%20copper%20to%20superoxide%20dismutase%20involves%20scaffolding%20by%20membranes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pope,%20Christopher%20R.&rft.date=2013-12-17&rft.volume=110&rft.issue=51&rft.spage=20491&rft.epage=20496&rft.pages=20491-20496&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1309820110&rft_dat=%3Cjstor_pnas_%3E23761581%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-96b7822d74b33e382d2e6ebfefb87721dafd0019fc9a95a2f4dbbc8d99aa706c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471917809&rft_id=info:pmid/24297923&rft_jstor_id=23761581&rfr_iscdi=true