Loading…
Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion
Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex a...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15226-15231 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043 |
---|---|
cites | cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043 |
container_end_page | 15231 |
container_issue | 42 |
container_start_page | 15226 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 111 |
creator | Hayano, Yasufumi Sasaki, Kensuke Ohmura, Nami Takemoto, Makoto Maeda, Yurie Yamashita, Toshihide Hata, Yoshio Kitada, Kazuhiro Yamamoto, Nobuhiko |
description | Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits.
Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression. |
doi_str_mv | 10.1073/pnas.1402095111 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_42_15226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189906</jstor_id><sourcerecordid>43189906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYMoTju6dqUWuHFTM7mpPDeCDL5gUFBnHVKpVHea6qRNUoPz703RbftYCYEs7ncO99yD0FPAF4BFd7kPJl8AxQQrBgD30AqwgpZThe-jFcZEtJISeoYe5bzFuFISP0RnhBEpRSdW6MsnV5IPLW2SW8-TKS43ZWMms4s2puKtmRrzI4amTybYjQ_rxofG1GeLv_Xlrh3c3oXBhdKMJm98DI_Rg9FM2T05_ufo5t3bb1cf2uvP7z9evbluLVNQqm5QgjPiGGGOc2m4ZIaJkVrgDhPFeEd6OQCVjjDZ256MUnaUdb0aTYdpd45eH3z3c79zg60rJDPpffI7k-50NF7_PQl-o9fxVlMC1Z9Xg1dHgxS_zy4XvfPZumkywcU5a-CKKkEEl_-BAhOUSowr-vIfdBvnFOolFoozkCBEpS4PlE0x5-TG096A9VKtXqrVv6utiud_xj3xv7qsQHMEFuXJDqAG1sAIWRI_OyDbXGI6MbQDqRRe5i8O89FEbdbJZ33zlWDgGEMnBZXdT1lZvFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616518177</pqid></control><display><type>article</type><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</creator><creatorcontrib>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</creatorcontrib><description>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits.
Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1402095111</identifier><identifier>PMID: 25288737</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Axons ; Axons - metabolism ; Axons - physiology ; Behavioral neuroscience ; Biological Sciences ; Brain ; Branching ; Cells ; Cerebral Cortex - metabolism ; Cerebral Cortex - physiology ; Coculture Techniques ; Electroporation ; Gene Expression Profiling ; Gene Expression Regulation ; HEK293 Cells ; Heterozygote ; Humans ; Mice ; Mice, Knockout ; Molecules ; Nerve Growth Factors - physiology ; Netrins ; Neurons ; Neuroscience ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface - metabolism ; Rodents ; Signal Transduction ; Somatosensory cortex ; Thalamus ; Thalamus - metabolism ; Thalamus - physiology ; Visual cortex ; Visual Cortex - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15226-15231</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</citedby><cites>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189906$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189906$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayano, Yasufumi</creatorcontrib><creatorcontrib>Sasaki, Kensuke</creatorcontrib><creatorcontrib>Ohmura, Nami</creatorcontrib><creatorcontrib>Takemoto, Makoto</creatorcontrib><creatorcontrib>Maeda, Yurie</creatorcontrib><creatorcontrib>Yamashita, Toshihide</creatorcontrib><creatorcontrib>Hata, Yoshio</creatorcontrib><creatorcontrib>Kitada, Kazuhiro</creatorcontrib><creatorcontrib>Yamamoto, Nobuhiko</creatorcontrib><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits.
Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Branching</subject><subject>Cells</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - physiology</subject><subject>Coculture Techniques</subject><subject>Electroporation</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>HEK293 Cells</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecules</subject><subject>Nerve Growth Factors - physiology</subject><subject>Netrins</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Somatosensory cortex</subject><subject>Thalamus</subject><subject>Thalamus - metabolism</subject><subject>Thalamus - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhYMoTju6dqUWuHFTM7mpPDeCDL5gUFBnHVKpVHea6qRNUoPz703RbftYCYEs7ncO99yD0FPAF4BFd7kPJl8AxQQrBgD30AqwgpZThe-jFcZEtJISeoYe5bzFuFISP0RnhBEpRSdW6MsnV5IPLW2SW8-TKS43ZWMms4s2puKtmRrzI4amTybYjQ_rxofG1GeLv_Xlrh3c3oXBhdKMJm98DI_Rg9FM2T05_ufo5t3bb1cf2uvP7z9evbluLVNQqm5QgjPiGGGOc2m4ZIaJkVrgDhPFeEd6OQCVjjDZ256MUnaUdb0aTYdpd45eH3z3c79zg60rJDPpffI7k-50NF7_PQl-o9fxVlMC1Z9Xg1dHgxS_zy4XvfPZumkywcU5a-CKKkEEl_-BAhOUSowr-vIfdBvnFOolFoozkCBEpS4PlE0x5-TG096A9VKtXqrVv6utiud_xj3xv7qsQHMEFuXJDqAG1sAIWRI_OyDbXGI6MbQDqRRe5i8O89FEbdbJZ33zlWDgGEMnBZXdT1lZvFg</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Hayano, Yasufumi</creator><creator>Sasaki, Kensuke</creator><creator>Ohmura, Nami</creator><creator>Takemoto, Makoto</creator><creator>Maeda, Yurie</creator><creator>Yamashita, Toshihide</creator><creator>Hata, Yoshio</creator><creator>Kitada, Kazuhiro</creator><creator>Yamamoto, Nobuhiko</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><author>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Branching</topic><topic>Cells</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - physiology</topic><topic>Coculture Techniques</topic><topic>Electroporation</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>HEK293 Cells</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecules</topic><topic>Nerve Growth Factors - physiology</topic><topic>Netrins</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Somatosensory cortex</topic><topic>Thalamus</topic><topic>Thalamus - metabolism</topic><topic>Thalamus - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayano, Yasufumi</creatorcontrib><creatorcontrib>Sasaki, Kensuke</creatorcontrib><creatorcontrib>Ohmura, Nami</creatorcontrib><creatorcontrib>Takemoto, Makoto</creatorcontrib><creatorcontrib>Maeda, Yurie</creatorcontrib><creatorcontrib>Yamashita, Toshihide</creatorcontrib><creatorcontrib>Hata, Yoshio</creatorcontrib><creatorcontrib>Kitada, Kazuhiro</creatorcontrib><creatorcontrib>Yamamoto, Nobuhiko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayano, Yasufumi</au><au>Sasaki, Kensuke</au><au>Ohmura, Nami</au><au>Takemoto, Makoto</au><au>Maeda, Yurie</au><au>Yamashita, Toshihide</au><au>Hata, Yoshio</au><au>Kitada, Kazuhiro</au><au>Yamamoto, Nobuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15226</spage><epage>15231</epage><pages>15226-15231</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits.
Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288737</pmid><doi>10.1073/pnas.1402095111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15226-15231 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_111_42_15226 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Animals Axons Axons - metabolism Axons - physiology Behavioral neuroscience Biological Sciences Brain Branching Cells Cerebral Cortex - metabolism Cerebral Cortex - physiology Coculture Techniques Electroporation Gene Expression Profiling Gene Expression Regulation HEK293 Cells Heterozygote Humans Mice Mice, Knockout Molecules Nerve Growth Factors - physiology Netrins Neurons Neuroscience Proteins Rats Rats, Sprague-Dawley Receptors, Cell Surface - metabolism Rodents Signal Transduction Somatosensory cortex Thalamus Thalamus - metabolism Thalamus - physiology Visual cortex Visual Cortex - metabolism |
title | Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Netrin-4%20regulates%20thalamocortical%20axon%20branching%20in%20an%20activity-dependent%20fashion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hayano,%20Yasufumi&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15226&rft.epage=15231&rft.pages=15226-15231&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1402095111&rft_dat=%3Cjstor_pnas_%3E43189906%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1616518177&rft_id=info:pmid/25288737&rft_jstor_id=43189906&rfr_iscdi=true |