Loading…

Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion

Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2014-10, Vol.111 (42), p.15226-15231
Main Authors: Hayano, Yasufumi, Sasaki, Kensuke, Ohmura, Nami, Takemoto, Makoto, Maeda, Yurie, Yamashita, Toshihide, Hata, Yoshio, Kitada, Kazuhiro, Yamamoto, Nobuhiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043
cites cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043
container_end_page 15231
container_issue 42
container_start_page 15226
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 111
creator Hayano, Yasufumi
Sasaki, Kensuke
Ohmura, Nami
Takemoto, Makoto
Maeda, Yurie
Yamashita, Toshihide
Hata, Yoshio
Kitada, Kazuhiro
Yamamoto, Nobuhiko
description Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits. Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.
doi_str_mv 10.1073/pnas.1402095111
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_111_42_15226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43189906</jstor_id><sourcerecordid>43189906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</originalsourceid><addsrcrecordid>eNqNkUuLFDEUhYMoTju6dqUWuHFTM7mpPDeCDL5gUFBnHVKpVHea6qRNUoPz703RbftYCYEs7ncO99yD0FPAF4BFd7kPJl8AxQQrBgD30AqwgpZThe-jFcZEtJISeoYe5bzFuFISP0RnhBEpRSdW6MsnV5IPLW2SW8-TKS43ZWMms4s2puKtmRrzI4amTybYjQ_rxofG1GeLv_Xlrh3c3oXBhdKMJm98DI_Rg9FM2T05_ufo5t3bb1cf2uvP7z9evbluLVNQqm5QgjPiGGGOc2m4ZIaJkVrgDhPFeEd6OQCVjjDZ256MUnaUdb0aTYdpd45eH3z3c79zg60rJDPpffI7k-50NF7_PQl-o9fxVlMC1Z9Xg1dHgxS_zy4XvfPZumkywcU5a-CKKkEEl_-BAhOUSowr-vIfdBvnFOolFoozkCBEpS4PlE0x5-TG096A9VKtXqrVv6utiud_xj3xv7qsQHMEFuXJDqAG1sAIWRI_OyDbXGI6MbQDqRRe5i8O89FEbdbJZ33zlWDgGEMnBZXdT1lZvFg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1616518177</pqid></control><display><type>article</type><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</creator><creatorcontrib>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</creatorcontrib><description>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits. Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1402095111</identifier><identifier>PMID: 25288737</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Axons ; Axons - metabolism ; Axons - physiology ; Behavioral neuroscience ; Biological Sciences ; Brain ; Branching ; Cells ; Cerebral Cortex - metabolism ; Cerebral Cortex - physiology ; Coculture Techniques ; Electroporation ; Gene Expression Profiling ; Gene Expression Regulation ; HEK293 Cells ; Heterozygote ; Humans ; Mice ; Mice, Knockout ; Molecules ; Nerve Growth Factors - physiology ; Netrins ; Neurons ; Neuroscience ; Proteins ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface - metabolism ; Rodents ; Signal Transduction ; Somatosensory cortex ; Thalamus ; Thalamus - metabolism ; Thalamus - physiology ; Visual cortex ; Visual Cortex - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15226-15231</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 21, 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</citedby><cites>FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/111/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43189906$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43189906$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hayano, Yasufumi</creatorcontrib><creatorcontrib>Sasaki, Kensuke</creatorcontrib><creatorcontrib>Ohmura, Nami</creatorcontrib><creatorcontrib>Takemoto, Makoto</creatorcontrib><creatorcontrib>Maeda, Yurie</creatorcontrib><creatorcontrib>Yamashita, Toshihide</creatorcontrib><creatorcontrib>Hata, Yoshio</creatorcontrib><creatorcontrib>Kitada, Kazuhiro</creatorcontrib><creatorcontrib>Yamamoto, Nobuhiko</creatorcontrib><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits. Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</description><subject>Animals</subject><subject>Axons</subject><subject>Axons - metabolism</subject><subject>Axons - physiology</subject><subject>Behavioral neuroscience</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Branching</subject><subject>Cells</subject><subject>Cerebral Cortex - metabolism</subject><subject>Cerebral Cortex - physiology</subject><subject>Coculture Techniques</subject><subject>Electroporation</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>HEK293 Cells</subject><subject>Heterozygote</subject><subject>Humans</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecules</subject><subject>Nerve Growth Factors - physiology</subject><subject>Netrins</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Rodents</subject><subject>Signal Transduction</subject><subject>Somatosensory cortex</subject><subject>Thalamus</subject><subject>Thalamus - metabolism</subject><subject>Thalamus - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUuLFDEUhYMoTju6dqUWuHFTM7mpPDeCDL5gUFBnHVKpVHea6qRNUoPz703RbftYCYEs7ncO99yD0FPAF4BFd7kPJl8AxQQrBgD30AqwgpZThe-jFcZEtJISeoYe5bzFuFISP0RnhBEpRSdW6MsnV5IPLW2SW8-TKS43ZWMms4s2puKtmRrzI4amTybYjQ_rxofG1GeLv_Xlrh3c3oXBhdKMJm98DI_Rg9FM2T05_ufo5t3bb1cf2uvP7z9evbluLVNQqm5QgjPiGGGOc2m4ZIaJkVrgDhPFeEd6OQCVjjDZ256MUnaUdb0aTYdpd45eH3z3c79zg60rJDPpffI7k-50NF7_PQl-o9fxVlMC1Z9Xg1dHgxS_zy4XvfPZumkywcU5a-CKKkEEl_-BAhOUSowr-vIfdBvnFOolFoozkCBEpS4PlE0x5-TG096A9VKtXqrVv6utiud_xj3xv7qsQHMEFuXJDqAG1sAIWRI_OyDbXGI6MbQDqRRe5i8O89FEbdbJZ33zlWDgGEMnBZXdT1lZvFg</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Hayano, Yasufumi</creator><creator>Sasaki, Kensuke</creator><creator>Ohmura, Nami</creator><creator>Takemoto, Makoto</creator><creator>Maeda, Yurie</creator><creator>Yamashita, Toshihide</creator><creator>Hata, Yoshio</creator><creator>Kitada, Kazuhiro</creator><creator>Yamamoto, Nobuhiko</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20141021</creationdate><title>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</title><author>Hayano, Yasufumi ; Sasaki, Kensuke ; Ohmura, Nami ; Takemoto, Makoto ; Maeda, Yurie ; Yamashita, Toshihide ; Hata, Yoshio ; Kitada, Kazuhiro ; Yamamoto, Nobuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Axons</topic><topic>Axons - metabolism</topic><topic>Axons - physiology</topic><topic>Behavioral neuroscience</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Branching</topic><topic>Cells</topic><topic>Cerebral Cortex - metabolism</topic><topic>Cerebral Cortex - physiology</topic><topic>Coculture Techniques</topic><topic>Electroporation</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>HEK293 Cells</topic><topic>Heterozygote</topic><topic>Humans</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecules</topic><topic>Nerve Growth Factors - physiology</topic><topic>Netrins</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Rodents</topic><topic>Signal Transduction</topic><topic>Somatosensory cortex</topic><topic>Thalamus</topic><topic>Thalamus - metabolism</topic><topic>Thalamus - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayano, Yasufumi</creatorcontrib><creatorcontrib>Sasaki, Kensuke</creatorcontrib><creatorcontrib>Ohmura, Nami</creatorcontrib><creatorcontrib>Takemoto, Makoto</creatorcontrib><creatorcontrib>Maeda, Yurie</creatorcontrib><creatorcontrib>Yamashita, Toshihide</creatorcontrib><creatorcontrib>Hata, Yoshio</creatorcontrib><creatorcontrib>Kitada, Kazuhiro</creatorcontrib><creatorcontrib>Yamamoto, Nobuhiko</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayano, Yasufumi</au><au>Sasaki, Kensuke</au><au>Ohmura, Nami</au><au>Takemoto, Makoto</au><au>Maeda, Yurie</au><au>Yamashita, Toshihide</au><au>Hata, Yoshio</au><au>Kitada, Kazuhiro</au><au>Yamamoto, Nobuhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2014-10-21</date><risdate>2014</risdate><volume>111</volume><issue>42</issue><spage>15226</spage><epage>15231</epage><pages>15226-15231</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Significance The environmental control of neuronal wiring is one of the most intriguing issues in neuroscience. However, the molecular mechanisms are largely unknown. Here, we demonstrate that the expression of the netrin family member netrin-4 (NTN4) is activity-dependent in the developing cortex and promotes terminal branching of thalamocortical axons. Evidence further shows that unc-5 homolog B (Unc5B), a putative receptor of NTN4, is expressed in the developing thalamus and mediates NTN4 signaling. These results suggest that NTN4 is the key molecule that underlies activity-dependent axon branch formation in neocortical circuits. Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching. In the postnatal developmental stages of rodents, ntn4 expression was abundant in and around the TC recipient layers of sensory cortices. Neuronal activity dramatically altered the ntn4 expression level in the cortex in vitro and in vivo. TC axon branching was promoted by exogenous NTN4 and suppressed by depletion of the endogenous protein. Moreover, unc-5 homolog B (Unc5B), which strongly bound to NTN4, was expressed in the sensory thalamus, and knockdown of Unc5B in thalamic cells markedly reduced TC axon branching. These results suggest that NTN4 acts as a positive regulator for TC axon branching through activity-dependent expression.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288737</pmid><doi>10.1073/pnas.1402095111</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2014-10, Vol.111 (42), p.15226-15231
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_111_42_15226
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Animals
Axons
Axons - metabolism
Axons - physiology
Behavioral neuroscience
Biological Sciences
Brain
Branching
Cells
Cerebral Cortex - metabolism
Cerebral Cortex - physiology
Coculture Techniques
Electroporation
Gene Expression Profiling
Gene Expression Regulation
HEK293 Cells
Heterozygote
Humans
Mice
Mice, Knockout
Molecules
Nerve Growth Factors - physiology
Netrins
Neurons
Neuroscience
Proteins
Rats
Rats, Sprague-Dawley
Receptors, Cell Surface - metabolism
Rodents
Signal Transduction
Somatosensory cortex
Thalamus
Thalamus - metabolism
Thalamus - physiology
Visual cortex
Visual Cortex - metabolism
title Netrin-4 regulates thalamocortical axon branching in an activity-dependent fashion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A00%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Netrin-4%20regulates%20thalamocortical%20axon%20branching%20in%20an%20activity-dependent%20fashion&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hayano,%20Yasufumi&rft.date=2014-10-21&rft.volume=111&rft.issue=42&rft.spage=15226&rft.epage=15231&rft.pages=15226-15231&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1402095111&rft_dat=%3Cjstor_pnas_%3E43189906%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c591t-ded97652e525e668a685a57f4c16e0295632b8d148e258bcb2f883453b9fa3043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1616518177&rft_id=info:pmid/25288737&rft_jstor_id=43189906&rfr_iscdi=true