Loading…
Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro
Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae,...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1986-04, Vol.83 (7), p.2017-2021 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353 |
---|---|
cites | |
container_end_page | 2021 |
container_issue | 7 |
container_start_page | 2017 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 83 |
creator | Haselbeck, Anton Schekman, Randy |
description | Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed. |
doi_str_mv | 10.1073/pnas.83.7.2017 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_83_7_2017_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27129</jstor_id><sourcerecordid>27129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</originalsourceid><addsrcrecordid>eNp9kM1vEzEQxS0EKmnhygEJaQ-ot13GH7v2Hjigqi2RKnEpB06W7bXLVo4dbCci_z2OEoVw4WTJ7_fezDyE3mHoMHD6aR1U7gTteEcA8xdogWHE7cBGeIkWAIS3ghH2Gl3m_AwAYy_gAl0QRjARwwLdLkOxKaYnFaz3tnlMKmRnU6PC1Nz7nYl551WZY2iia35YlUuzDFubisq2mUOznUuKb9Arp3y2b4_vFfp-d_t487V9-Ha_vPny0BoGwFs29mbEuDfgtNJYaz0BncBSDI4QMk2g6SBYj7nArn4Pk8GG6FEzbRimPb1Cnw-5641e2cnYUJLycp3mlUo7GdUs_1XC_FM-xa2khBKCq__66E_x18bmIldzNvXwen3cZMkHzhkbWAW7A2hSzDlZd5qBQe57l_vepaCSy33v1fDhfLMTfiy66h-PuspGeVdrNnM-YWLoMWPiLGYff1LPxlz_T5du432xv0sF3x_A51xi-rsOx2SkfwD98azq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76774464</pqid></control><display><type>article</type><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Haselbeck, Anton ; Schekman, Randy</creator><creatorcontrib>Haselbeck, Anton ; Schekman, Randy</creatorcontrib><description>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.7.2017</identifier><identifier>PMID: 2421286</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Antibodies ; beta-Fructofuranosidase ; Biological and medical sciences ; Biological Transport ; Cell Compartmentation ; Centrifugation ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes, Fungal ; Glycoproteins ; Glycoproteins - metabolism ; Glycoside Hydrolases - metabolism ; Golgi Apparatus - metabolism ; Growth, nutrition, metabolism, transports, enzymes. Molecular biology ; Guanosine Diphosphate Mannose - metabolism ; Intracellular Membranes - metabolism ; Manganese - metabolism ; Microbiology ; Mycology ; Oligosaccharides ; P branes ; Protein Processing, Post-Translational ; Protein transport ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - metabolism ; Spheroplasts ; String theory ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (7), p.2017-2021</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/83/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8651448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2421286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haselbeck, Anton</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</description><subject>Antibodies</subject><subject>beta-Fructofuranosidase</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Cell Compartmentation</subject><subject>Centrifugation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Fungal</subject><subject>Glycoproteins</subject><subject>Glycoproteins - metabolism</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>Intracellular Membranes - metabolism</subject><subject>Manganese - metabolism</subject><subject>Microbiology</subject><subject>Mycology</subject><subject>Oligosaccharides</subject><subject>P branes</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein transport</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spheroplasts</subject><subject>String theory</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kM1vEzEQxS0EKmnhygEJaQ-ot13GH7v2Hjigqi2RKnEpB06W7bXLVo4dbCci_z2OEoVw4WTJ7_fezDyE3mHoMHD6aR1U7gTteEcA8xdogWHE7cBGeIkWAIS3ghH2Gl3m_AwAYy_gAl0QRjARwwLdLkOxKaYnFaz3tnlMKmRnU6PC1Nz7nYl551WZY2iia35YlUuzDFubisq2mUOznUuKb9Arp3y2b4_vFfp-d_t487V9-Ha_vPny0BoGwFs29mbEuDfgtNJYaz0BncBSDI4QMk2g6SBYj7nArn4Pk8GG6FEzbRimPb1Cnw-5641e2cnYUJLycp3mlUo7GdUs_1XC_FM-xa2khBKCq__66E_x18bmIldzNvXwen3cZMkHzhkbWAW7A2hSzDlZd5qBQe57l_vepaCSy33v1fDhfLMTfiy66h-PuspGeVdrNnM-YWLoMWPiLGYff1LPxlz_T5du432xv0sF3x_A51xi-rsOx2SkfwD98azq</recordid><startdate>19860401</startdate><enddate>19860401</enddate><creator>Haselbeck, Anton</creator><creator>Schekman, Randy</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19860401</creationdate><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><author>Haselbeck, Anton ; Schekman, Randy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Antibodies</topic><topic>beta-Fructofuranosidase</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Cell Compartmentation</topic><topic>Centrifugation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Fungal</topic><topic>Glycoproteins</topic><topic>Glycoproteins - metabolism</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>Intracellular Membranes - metabolism</topic><topic>Manganese - metabolism</topic><topic>Microbiology</topic><topic>Mycology</topic><topic>Oligosaccharides</topic><topic>P branes</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein transport</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spheroplasts</topic><topic>String theory</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haselbeck, Anton</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haselbeck, Anton</au><au>Schekman, Randy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1986-04-01</date><risdate>1986</risdate><volume>83</volume><issue>7</issue><spage>2017</spage><epage>2021</epage><pages>2017-2021</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2421286</pmid><doi>10.1073/pnas.83.7.2017</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (7), p.2017-2021 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_83_7_2017_fulltext |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Antibodies beta-Fructofuranosidase Biological and medical sciences Biological Transport Cell Compartmentation Centrifugation Endoplasmic reticulum Endoplasmic Reticulum - metabolism Fundamental and applied biological sciences. Psychology Genes, Fungal Glycoproteins Glycoproteins - metabolism Glycoside Hydrolases - metabolism Golgi Apparatus - metabolism Growth, nutrition, metabolism, transports, enzymes. Molecular biology Guanosine Diphosphate Mannose - metabolism Intracellular Membranes - metabolism Manganese - metabolism Microbiology Mycology Oligosaccharides P branes Protein Processing, Post-Translational Protein transport Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - metabolism Spheroplasts String theory Yeasts |
title | Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interorganelle%20Transfer%20and%20Glycosylation%20of%20Yeast%20Invertase%20in%20vitro&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Haselbeck,%20Anton&rft.date=1986-04-01&rft.volume=83&rft.issue=7&rft.spage=2017&rft.epage=2021&rft.pages=2017-2021&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.7.2017&rft_dat=%3Cjstor_pnas_%3E27129%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76774464&rft_id=info:pmid/2421286&rft_jstor_id=27129&rfr_iscdi=true |