Loading…

Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro

Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae,...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1986-04, Vol.83 (7), p.2017-2021
Main Authors: Haselbeck, Anton, Schekman, Randy
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353
cites
container_end_page 2021
container_issue 7
container_start_page 2017
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 83
creator Haselbeck, Anton
Schekman, Randy
description Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.
doi_str_mv 10.1073/pnas.83.7.2017
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_83_7_2017_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27129</jstor_id><sourcerecordid>27129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</originalsourceid><addsrcrecordid>eNp9kM1vEzEQxS0EKmnhygEJaQ-ot13GH7v2Hjigqi2RKnEpB06W7bXLVo4dbCci_z2OEoVw4WTJ7_fezDyE3mHoMHD6aR1U7gTteEcA8xdogWHE7cBGeIkWAIS3ghH2Gl3m_AwAYy_gAl0QRjARwwLdLkOxKaYnFaz3tnlMKmRnU6PC1Nz7nYl551WZY2iia35YlUuzDFubisq2mUOznUuKb9Arp3y2b4_vFfp-d_t487V9-Ha_vPny0BoGwFs29mbEuDfgtNJYaz0BncBSDI4QMk2g6SBYj7nArn4Pk8GG6FEzbRimPb1Cnw-5641e2cnYUJLycp3mlUo7GdUs_1XC_FM-xa2khBKCq__66E_x18bmIldzNvXwen3cZMkHzhkbWAW7A2hSzDlZd5qBQe57l_vepaCSy33v1fDhfLMTfiy66h-PuspGeVdrNnM-YWLoMWPiLGYff1LPxlz_T5du432xv0sF3x_A51xi-rsOx2SkfwD98azq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76774464</pqid></control><display><type>article</type><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Haselbeck, Anton ; Schekman, Randy</creator><creatorcontrib>Haselbeck, Anton ; Schekman, Randy</creatorcontrib><description>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.83.7.2017</identifier><identifier>PMID: 2421286</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Antibodies ; beta-Fructofuranosidase ; Biological and medical sciences ; Biological Transport ; Cell Compartmentation ; Centrifugation ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Fundamental and applied biological sciences. Psychology ; Genes, Fungal ; Glycoproteins ; Glycoproteins - metabolism ; Glycoside Hydrolases - metabolism ; Golgi Apparatus - metabolism ; Growth, nutrition, metabolism, transports, enzymes. Molecular biology ; Guanosine Diphosphate Mannose - metabolism ; Intracellular Membranes - metabolism ; Manganese - metabolism ; Microbiology ; Mycology ; Oligosaccharides ; P branes ; Protein Processing, Post-Translational ; Protein transport ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - metabolism ; Spheroplasts ; String theory ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (7), p.2017-2021</ispartof><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/83/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27129$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27129$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8651448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2421286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haselbeck, Anton</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</description><subject>Antibodies</subject><subject>beta-Fructofuranosidase</subject><subject>Biological and medical sciences</subject><subject>Biological Transport</subject><subject>Cell Compartmentation</subject><subject>Centrifugation</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes, Fungal</subject><subject>Glycoproteins</subject><subject>Glycoproteins - metabolism</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Golgi Apparatus - metabolism</subject><subject>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</subject><subject>Guanosine Diphosphate Mannose - metabolism</subject><subject>Intracellular Membranes - metabolism</subject><subject>Manganese - metabolism</subject><subject>Microbiology</subject><subject>Mycology</subject><subject>Oligosaccharides</subject><subject>P branes</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein transport</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Spheroplasts</subject><subject>String theory</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kM1vEzEQxS0EKmnhygEJaQ-ot13GH7v2Hjigqi2RKnEpB06W7bXLVo4dbCci_z2OEoVw4WTJ7_fezDyE3mHoMHD6aR1U7gTteEcA8xdogWHE7cBGeIkWAIS3ghH2Gl3m_AwAYy_gAl0QRjARwwLdLkOxKaYnFaz3tnlMKmRnU6PC1Nz7nYl551WZY2iia35YlUuzDFubisq2mUOznUuKb9Arp3y2b4_vFfp-d_t487V9-Ha_vPny0BoGwFs29mbEuDfgtNJYaz0BncBSDI4QMk2g6SBYj7nArn4Pk8GG6FEzbRimPb1Cnw-5641e2cnYUJLycp3mlUo7GdUs_1XC_FM-xa2khBKCq__66E_x18bmIldzNvXwen3cZMkHzhkbWAW7A2hSzDlZd5qBQe57l_vepaCSy33v1fDhfLMTfiy66h-PuspGeVdrNnM-YWLoMWPiLGYff1LPxlz_T5du432xv0sF3x_A51xi-rsOx2SkfwD98azq</recordid><startdate>19860401</startdate><enddate>19860401</enddate><creator>Haselbeck, Anton</creator><creator>Schekman, Randy</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19860401</creationdate><title>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</title><author>Haselbeck, Anton ; Schekman, Randy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Antibodies</topic><topic>beta-Fructofuranosidase</topic><topic>Biological and medical sciences</topic><topic>Biological Transport</topic><topic>Cell Compartmentation</topic><topic>Centrifugation</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes, Fungal</topic><topic>Glycoproteins</topic><topic>Glycoproteins - metabolism</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Golgi Apparatus - metabolism</topic><topic>Growth, nutrition, metabolism, transports, enzymes. Molecular biology</topic><topic>Guanosine Diphosphate Mannose - metabolism</topic><topic>Intracellular Membranes - metabolism</topic><topic>Manganese - metabolism</topic><topic>Microbiology</topic><topic>Mycology</topic><topic>Oligosaccharides</topic><topic>P branes</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein transport</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Spheroplasts</topic><topic>String theory</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haselbeck, Anton</creatorcontrib><creatorcontrib>Schekman, Randy</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haselbeck, Anton</au><au>Schekman, Randy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1986-04-01</date><risdate>1986</risdate><volume>83</volume><issue>7</issue><spage>2017</spage><epage>2021</epage><pages>2017-2021</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>Core glycosylated proteins formed in the yeast endoplasmic reticulum (ER) are transported to the Golgi body, where oligosaccharides are elongated by addition of outer-chain carbohydrate. The transport process is blocked in a temperature-sensitive secretion mutant (sec18) of Saccharomyces cerevisiae, which accumulates core glycosylated invertase (product of SUC2; EC 3.2.1.26) in the ER. To approach the molecular mechanism of this transport process, we have devised a reaction in which core glycosylated invertase, accumulated in sec18 cells, is transferred to the Golgi body in vitro. For this purpose, membranes from sec18, SUC2 cells that are also defective in an outer chain α -1→ 3-mannosyltransferase (mnn1) are mixed with membranes from a strain that contains the transferase but is deficient in invertase (MNN1, Δ SUC2). Transfer is detected by the acquisition of outer-chain α -1→ 3-linked mannose residues dependent on both donor and recipient membranes. The reaction is temperature and detergent sensitive and requires ATP, GDP-mannose, Mg2+, and Mn2+, and the product invertase remains associated with sedimentable membranes. Treatment of donor, but not acceptor, membranes with N-ethylmaleimide or trypsin inactivates transfer competence. These characteristics suggest that the ER, or a vesicle derived from the ER, contributes invertase to a chemically distinct compartment where mannosyl modification is executed.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>2421286</pmid><doi>10.1073/pnas.83.7.2017</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1986-04, Vol.83 (7), p.2017-2021
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_83_7_2017_fulltext
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Antibodies
beta-Fructofuranosidase
Biological and medical sciences
Biological Transport
Cell Compartmentation
Centrifugation
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Fundamental and applied biological sciences. Psychology
Genes, Fungal
Glycoproteins
Glycoproteins - metabolism
Glycoside Hydrolases - metabolism
Golgi Apparatus - metabolism
Growth, nutrition, metabolism, transports, enzymes. Molecular biology
Guanosine Diphosphate Mannose - metabolism
Intracellular Membranes - metabolism
Manganese - metabolism
Microbiology
Mycology
Oligosaccharides
P branes
Protein Processing, Post-Translational
Protein transport
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - metabolism
Spheroplasts
String theory
Yeasts
title Interorganelle Transfer and Glycosylation of Yeast Invertase in vitro
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interorganelle%20Transfer%20and%20Glycosylation%20of%20Yeast%20Invertase%20in%20vitro&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Haselbeck,%20Anton&rft.date=1986-04-01&rft.volume=83&rft.issue=7&rft.spage=2017&rft.epage=2021&rft.pages=2017-2021&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.83.7.2017&rft_dat=%3Cjstor_pnas_%3E27129%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4007-495c9115c0fbab1bbbd03d0e310f222dd0b368451781f0e36dc1c2b9b4bc41353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76774464&rft_id=info:pmid/2421286&rft_jstor_id=27129&rfr_iscdi=true