Loading…
N-acetylation Pharmacogenetics: A Gene Deletion Causes Absence of Arylamine N-acetyltransferase in Liver of Slow Acetylator Rabbits
The New Zealand White rabbit provides a widely used animal model for the human acetylation polymorphism, which confers marked interindividual variation in the effect and toxicity of numerous drugs, chemicals, and potential carcinogens. The relationship of a recently isolated cDNA clone, designated r...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1989-12, Vol.86 (23), p.9554-9557 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The New Zealand White rabbit provides a widely used animal model for the human acetylation polymorphism, which confers marked interindividual variation in the effect and toxicity of numerous drugs, chemicals, and potential carcinogens. The relationship of a recently isolated cDNA clone, designated rnat, to genetically polymorphic arylamine N-acetyltransferase (NAT; acetyl-CoA:arylamine N-acetyltransferase, EC 2.3.1.5) of rabbit liver was established by its expression in monkey kidney COS-1 cells: (i) cytosols from transfected cultures contained high levels of an Ac-CoA-dependent NAT activity, which was kinetically indistinguishable from that observed in cytosols from livers of genetically rapid-acetylator rabbits; (ii) transfected cells also contained an immunoreactive protein, recognized by NAT-specific antibodies, with identical electrophoretic mobility to NAT from rabbit liver. The rnat clone and anti-NAT antibodies were then used to study the relationship between NAT activity, liver enzyme protein, and the level of mRNA in livers from in vivo phenotyped rapid- and slow-acetylator rabbits. Livers from slow acetylators were devoid of both immunodetectable NAT protein and its corresponding mRNA. Analysis of genomic DNA with a panel of restriction enzymes revealed the loss of specific hybridizing bands in the DNA of slow-acetylator rabbits. These data strongly suggest that defective arylamine N-acetylation in the rabbit model is caused by a gene deletion resulting in an absence of specific mRNA and NAT enzyme protein. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.86.23.9554 |