Loading…

Microinjection of a Protein-Tyrosine-Phosphatase Inhibits Insulin Action in Xenopus oocytes

A protein-tyrosine-phosphatase (PTPase 1B; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), specific for phosphotyrosyl residues, was microinjected into Xenopus oocytes. This resulted in a 3- to 5-fold increase in PTPase activity over endogenous levels. The PTPase blocked the insulin-stimu...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1990-07, Vol.87 (14), p.5514-5518
Main Authors: Cicirelli, Michael F., Tonks, Nicholas K., Diltz, Curtis D., Weiel, James E., Fischer, Edmond H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A protein-tyrosine-phosphatase (PTPase 1B; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48), specific for phosphotyrosyl residues, was microinjected into Xenopus oocytes. This resulted in a 3- to 5-fold increase in PTPase activity over endogenous levels. The PTPase blocked the insulin-stimulated phosphorylation of tyrosyl residues on endogenous proteins, including a protein having a molecular mass in the same range as the β subunit of the insulin or insulin-like growth factor I receptor. PTPase 1B also blocked the activation of an S6 peptide kinase--i.e., an enzyme recognizing a peptide having the sequence RRLSSLRA found in a segment of ribosomal protein S6 and known to be activated early in response to insulin. On the other hand, the insulin stimulation of an S6 kinase, detected by using 40S ribosomes as substrate, was unaffected even though PTPase 1B partially prevented the phosphorylation of ribosomal protein S6 in vivo. Mono Q chromatography of insulin-treated oocyte extracts revealed two main peaks of S6 kinase activity. Fractions from the first peak displayed S6 peptide kinase activity that was essentially abolished in profiles from PTPase 1B-injected oocytes. Material from the second peak, which was best revealed by using 40S ribosomes as substrate and had comparatively little S6 peptide kinase activity, was minimally affected by PTPase 1B. These observations suggest that at least two distinct "S6 kinases" are involved in ribosomal protein S6 phosphorylation in vivo and that the activation pathways for these enzymes differ in their sensitivity to PTPase 1B.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.14.5514