Loading…
Tetrahydrobiopterin, a Cofactor for Rat Cerebellar Nitric Oxide Synthase, does not Function as a Reactant in the Oxygenation of Arginine
Studies with purified nitric oxide synthase from rat cerebellum have confirmed previous reports that product formation is enhanced by tetrahydrobiopterin [H4B; 6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin]. The effect of the natural isomer, (6R)-H4B, is observed at extremely low (15 mo...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 1991-08, Vol.88 (16), p.7091-7095 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Studies with purified nitric oxide synthase from rat cerebellum have confirmed previous reports that product formation is enhanced by tetrahydrobiopterin [H4B; 6-(L-erythro-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin]. The effect of the natural isomer, (6R)-H4B, is observed at extremely low (15 mol of product. Recycling of H4B was excluded by direct measurement during nitric oxide synthesis and by the demonstration that nitric oxide synthase is not inhibited by methotrexate. These combined results exclude H4B as a stoichiometric reactant and suggest that H4B enhances product formation by protecting enzyme activity against progressive loss. Preliminary studies indicate that the decreased activity in the absence of added H4B does not depend on catalytic turnover of the enzyme. The role of H4B may be allosteric or it may function to maintain some group(s) on the enzyme in a reduced state required for activity. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.88.16.7091 |