Loading…

Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding

The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (Δ H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1992-08, Vol.89 (15), p.6803-6807
Main Authors: Kuroki, Ryota, Kawakita, Shigetsugu, Nakamura, Haruki, Yutani, Katsuhide
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c615t-955f873015f0a7f4defb7c8fc49ed1d2fa8e59a9e5ce811f6328f322f1933f923
cites
container_end_page 6807
container_issue 15
container_start_page 6803
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 89
creator Kuroki, Ryota
Kawakita, Shigetsugu
Nakamura, Haruki
Yutani, Katsuhide
description The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (Δ H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-type and apo-D86/92 lysozymes at 85⚬C. However, the unfolding Gibbs energy change (Δ G) of the holo mutant was 3.3 kcal/mol greater than the apo type at 85⚬C, indicating a significant decrease of entropy (TΔ S = 10.1 kcal/mol) in the presence of Ca2+. Subsequently, the Ca2+ binding process in the folded state of the mutant was analyzed by using titration isothermal calorimetry. The binding enthalpy change was estimated to be 4.5 kcal/mol, and Δ G was -8.1 kcal/mol at 85⚬C, which indicates that the binding was caused by a large increase in entropy (TΔ S = 12.6 kcal/mol). From these analyses, the unfolded holo mutant was determined to bind Ca2+ with a binding Δ G of -4.8 kcal/mol (Δ H = -2.6 kcal/mol, TΔ S = 2.2 kcal/mol) at 85⚬C. Therefore, the major cause of stabilization of holo-D86/92 is the decrease in entropy of the peptide chain due to Ca2+ binding to the unfolded protein.
doi_str_mv 10.1073/pnas.89.15.6803
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_89_15_6803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2359878</jstor_id><sourcerecordid>2359878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c615t-955f873015f0a7f4defb7c8fc49ed1d2fa8e59a9e5ce811f6328f322f1933f923</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EKqGwZgPIQlVZTerHeMaW2JSopZWCWABry_HYxdGMnfqBmv56ZpQ0UBas7uJ85957dAB4jdEco5aebbxKcy7mmM0bjugTMMNI4KqpBXoKZgiRtuI1qZ-DFymtEUKCcXQEjnAtmGj4DCwvfI5h4zT8ltXK9e5eZRc8DBYq-KVk5TO8KoPycLlN4X47GHjtu6JNB1dbuFC9dmWAn5zvnL95CZ5Z1Sfzaj-PwY_Li--Lq2r59fP14nxZ6QazXAnGLG8pwswi1dq6M3bVam51LUyHO2IVN0woYZg2HGPbUMItJcRiQakVhB6Dj7u9m7IaTKfNmEH1chPdoOJWBuXkY8W7n_Im_JJT6sl-urfHcFtMynJwSZu-V96EkiRuCCct5yP4_h9wHUr0YzRJECakrRkeobMdpGNIKRp7-AMjOXUkp44kFxIzOXU0Ot7-_f4fflfKqJ_sdZW06m1UXrt0wFjNCeFsxN7tsWn_g_rozof_AtKWvs_mLo_kmx25TjnEA0ooE7zl9DfbyLwp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201227451</pqid></control><display><type>article</type><title>Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding</title><source>PubMed Central (Open Access)</source><source>JSTOR</source><creator>Kuroki, Ryota ; Kawakita, Shigetsugu ; Nakamura, Haruki ; Yutani, Katsuhide</creator><creatorcontrib>Kuroki, Ryota ; Kawakita, Shigetsugu ; Nakamura, Haruki ; Yutani, Katsuhide</creatorcontrib><description>The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (Δ H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-type and apo-D86/92 lysozymes at 85⚬C. However, the unfolding Gibbs energy change (Δ G) of the holo mutant was 3.3 kcal/mol greater than the apo type at 85⚬C, indicating a significant decrease of entropy (TΔ S = 10.1 kcal/mol) in the presence of Ca2+. Subsequently, the Ca2+ binding process in the folded state of the mutant was analyzed by using titration isothermal calorimetry. The binding enthalpy change was estimated to be 4.5 kcal/mol, and Δ G was -8.1 kcal/mol at 85⚬C, which indicates that the binding was caused by a large increase in entropy (TΔ S = 12.6 kcal/mol). From these analyses, the unfolded holo mutant was determined to bind Ca2+ with a binding Δ G of -4.8 kcal/mol (Δ H = -2.6 kcal/mol, TΔ S = 2.2 kcal/mol) at 85⚬C. Therefore, the major cause of stabilization of holo-D86/92 is the decrease in entropy of the peptide chain due to Ca2+ binding to the unfolded protein.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.89.15.6803</identifier><identifier>PMID: 1495968</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; binding ; Binding Sites ; Biochemistry ; Biological and medical sciences ; Calcium ; Calcium - metabolism ; Calorimeters ; Calorimetry, Differential Scanning ; differential scanning calorimetry ; Enthalpy ; Entropy ; Enzyme Stability ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Heat measurement ; Humans ; Kinetics ; Ligands ; lysozyme ; Molecular biophysics ; Molecules ; Muramidase - chemistry ; Muramidase - genetics ; Muramidase - metabolism ; Mutagenesis, Site-Directed ; mutants ; Mutation ; Physico-chemical properties of biomolecules ; Protein Conformation ; Protein Denaturation ; stabilization ; Thermodynamics ; Titration</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1992-08, Vol.89 (15), p.6803-6807</ispartof><rights>Copyright 1992 The National Academy of Sciences of the United States of America</rights><rights>1992 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Aug 1, 1992</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c615t-955f873015f0a7f4defb7c8fc49ed1d2fa8e59a9e5ce811f6328f322f1933f923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/89/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2359878$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2359878$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5482285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1495968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuroki, Ryota</creatorcontrib><creatorcontrib>Kawakita, Shigetsugu</creatorcontrib><creatorcontrib>Nakamura, Haruki</creatorcontrib><creatorcontrib>Yutani, Katsuhide</creatorcontrib><title>Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (Δ H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-type and apo-D86/92 lysozymes at 85⚬C. However, the unfolding Gibbs energy change (Δ G) of the holo mutant was 3.3 kcal/mol greater than the apo type at 85⚬C, indicating a significant decrease of entropy (TΔ S = 10.1 kcal/mol) in the presence of Ca2+. Subsequently, the Ca2+ binding process in the folded state of the mutant was analyzed by using titration isothermal calorimetry. The binding enthalpy change was estimated to be 4.5 kcal/mol, and Δ G was -8.1 kcal/mol at 85⚬C, which indicates that the binding was caused by a large increase in entropy (TΔ S = 12.6 kcal/mol). From these analyses, the unfolded holo mutant was determined to bind Ca2+ with a binding Δ G of -4.8 kcal/mol (Δ H = -2.6 kcal/mol, TΔ S = 2.2 kcal/mol) at 85⚬C. Therefore, the major cause of stabilization of holo-D86/92 is the decrease in entropy of the peptide chain due to Ca2+ binding to the unfolded protein.</description><subject>Amino Acid Sequence</subject><subject>binding</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calorimeters</subject><subject>Calorimetry, Differential Scanning</subject><subject>differential scanning calorimetry</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Heat measurement</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>lysozyme</subject><subject>Molecular biophysics</subject><subject>Molecules</subject><subject>Muramidase - chemistry</subject><subject>Muramidase - genetics</subject><subject>Muramidase - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutants</subject><subject>Mutation</subject><subject>Physico-chemical properties of biomolecules</subject><subject>Protein Conformation</subject><subject>Protein Denaturation</subject><subject>stabilization</subject><subject>Thermodynamics</subject><subject>Titration</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kUtvEzEUhS0EKqGwZgPIQlVZTerHeMaW2JSopZWCWABry_HYxdGMnfqBmv56ZpQ0UBas7uJ85957dAB4jdEco5aebbxKcy7mmM0bjugTMMNI4KqpBXoKZgiRtuI1qZ-DFymtEUKCcXQEjnAtmGj4DCwvfI5h4zT8ltXK9e5eZRc8DBYq-KVk5TO8KoPycLlN4X47GHjtu6JNB1dbuFC9dmWAn5zvnL95CZ5Z1Sfzaj-PwY_Li--Lq2r59fP14nxZ6QazXAnGLG8pwswi1dq6M3bVam51LUyHO2IVN0woYZg2HGPbUMItJcRiQakVhB6Dj7u9m7IaTKfNmEH1chPdoOJWBuXkY8W7n_Im_JJT6sl-urfHcFtMynJwSZu-V96EkiRuCCct5yP4_h9wHUr0YzRJECakrRkeobMdpGNIKRp7-AMjOXUkp44kFxIzOXU0Ot7-_f4fflfKqJ_sdZW06m1UXrt0wFjNCeFsxN7tsWn_g_rozof_AtKWvs_mLo_kmx25TjnEA0ooE7zl9DfbyLwp</recordid><startdate>19920801</startdate><enddate>19920801</enddate><creator>Kuroki, Ryota</creator><creator>Kawakita, Shigetsugu</creator><creator>Nakamura, Haruki</creator><creator>Yutani, Katsuhide</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>M81</scope><scope>5PM</scope></search><sort><creationdate>19920801</creationdate><title>Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding</title><author>Kuroki, Ryota ; Kawakita, Shigetsugu ; Nakamura, Haruki ; Yutani, Katsuhide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c615t-955f873015f0a7f4defb7c8fc49ed1d2fa8e59a9e5ce811f6328f322f1933f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Amino Acid Sequence</topic><topic>binding</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calorimeters</topic><topic>Calorimetry, Differential Scanning</topic><topic>differential scanning calorimetry</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Heat measurement</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>lysozyme</topic><topic>Molecular biophysics</topic><topic>Molecules</topic><topic>Muramidase - chemistry</topic><topic>Muramidase - genetics</topic><topic>Muramidase - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutants</topic><topic>Mutation</topic><topic>Physico-chemical properties of biomolecules</topic><topic>Protein Conformation</topic><topic>Protein Denaturation</topic><topic>stabilization</topic><topic>Thermodynamics</topic><topic>Titration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuroki, Ryota</creatorcontrib><creatorcontrib>Kawakita, Shigetsugu</creatorcontrib><creatorcontrib>Nakamura, Haruki</creatorcontrib><creatorcontrib>Yutani, Katsuhide</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biochemistry Abstracts 3</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuroki, Ryota</au><au>Kawakita, Shigetsugu</au><au>Nakamura, Haruki</au><au>Yutani, Katsuhide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1992-08-01</date><risdate>1992</risdate><volume>89</volume><issue>15</issue><spage>6803</spage><epage>6807</epage><pages>6803-6807</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The stabilization mechanism of the mutant human lysozyme with a calcium binding site (D86/92) was investigated by using calorimetric approaches. By differential scanning calorimetry, the enthalpy change (Δ H) in the unfolding of holo-D86/92 was found to be 6.8 kcal/mol smaller than that of the wild-type and apo-D86/92 lysozymes at 85⚬C. However, the unfolding Gibbs energy change (Δ G) of the holo mutant was 3.3 kcal/mol greater than the apo type at 85⚬C, indicating a significant decrease of entropy (TΔ S = 10.1 kcal/mol) in the presence of Ca2+. Subsequently, the Ca2+ binding process in the folded state of the mutant was analyzed by using titration isothermal calorimetry. The binding enthalpy change was estimated to be 4.5 kcal/mol, and Δ G was -8.1 kcal/mol at 85⚬C, which indicates that the binding was caused by a large increase in entropy (TΔ S = 12.6 kcal/mol). From these analyses, the unfolded holo mutant was determined to bind Ca2+ with a binding Δ G of -4.8 kcal/mol (Δ H = -2.6 kcal/mol, TΔ S = 2.2 kcal/mol) at 85⚬C. Therefore, the major cause of stabilization of holo-D86/92 is the decrease in entropy of the peptide chain due to Ca2+ binding to the unfolded protein.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>1495968</pmid><doi>10.1073/pnas.89.15.6803</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1992-08, Vol.89 (15), p.6803-6807
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_89_15_6803
source PubMed Central (Open Access); JSTOR
subjects Amino Acid Sequence
binding
Binding Sites
Biochemistry
Biological and medical sciences
Calcium
Calcium - metabolism
Calorimeters
Calorimetry, Differential Scanning
differential scanning calorimetry
Enthalpy
Entropy
Enzyme Stability
Enzymes
Fundamental and applied biological sciences. Psychology
Heat measurement
Humans
Kinetics
Ligands
lysozyme
Molecular biophysics
Molecules
Muramidase - chemistry
Muramidase - genetics
Muramidase - metabolism
Mutagenesis, Site-Directed
mutants
Mutation
Physico-chemical properties of biomolecules
Protein Conformation
Protein Denaturation
stabilization
Thermodynamics
Titration
title Entropic Stabilization of a Mutant Human Lysozyme Induced by Calcium Binding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropic%20Stabilization%20of%20a%20Mutant%20Human%20Lysozyme%20Induced%20by%20Calcium%20Binding&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kuroki,%20Ryota&rft.date=1992-08-01&rft.volume=89&rft.issue=15&rft.spage=6803&rft.epage=6807&rft.pages=6803-6807&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.89.15.6803&rft_dat=%3Cjstor_pnas_%3E2359878%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c615t-955f873015f0a7f4defb7c8fc49ed1d2fa8e59a9e5ce811f6328f322f1933f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201227451&rft_id=info:pmid/1495968&rft_jstor_id=2359878&rfr_iscdi=true