Loading…

Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene

Diverse organisms accumulate organic osmolytes to adapt to hyperosmotic stress. The molecular basis of eukaryotic gene osmoregulation remains obscure. Aldose reductase [AR; alditol:NAD(P)+1-oxidoreductase, EC 1.1.1.21], which catalyzes the conversion of glucose to sorbitol (an organic osmolyte), is...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1994-10, Vol.91 (22), p.10742-10746
Main Authors: Ferraris, Joan D., Williams, Chester K., Martin, Brian M., Burg, Maurice B., Garcia-Perez, Arlyn
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c525t-fd46dee0e97ad7d9e73e535a00b879c918c42cfedc751852e2197917aa179c6d3
cites
container_end_page 10746
container_issue 22
container_start_page 10742
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 91
creator Ferraris, Joan D.
Williams, Chester K.
Martin, Brian M.
Burg, Maurice B.
Garcia-Perez, Arlyn
description Diverse organisms accumulate organic osmolytes to adapt to hyperosmotic stress. The molecular basis of eukaryotic gene osmoregulation remains obscure. Aldose reductase [AR; alditol:NAD(P)+1-oxidoreductase, EC 1.1.1.21], which catalyzes the conversion of glucose to sorbitol (an organic osmolyte), is induced in renal medullary cells under hyperosmotic conditions. Elevated extracellular NaCl increases AR mRNA transcription in PAP-HT25 cells, a cell line derived from the rabbit renal papilla. We have cloned and characterized the rabbit AR gene to determine how it is regulated by hyperosmolality. The length of the gene, not including 5' or 3' flanking regions, is approximately 14.7 kilobases (kb) organized into 10 exons and 9 introns. The transcription start site is 36 base pairs upstream of the initiator methionine codon. A 5-kb fragment containing approximately 3.5 kb of 5' flanking region was isolated. The 3.5-kb sequence was examined for basal promoter activity and hyperosmotic response in luciferase reporter gene constructs. A 235-base-pair fragment (base pairs -208 to +27) was able to drive the downstream reporter gene in transfected PAP-HT25 cells under isoosmotic conditions (300 mosmol/kg of H2O). When this fragment plus the remaining upstream sequence (from approximately base pair -3429 to base pair +27) was used, cells in hyperosmotic medium (500 mosmol/kg of H2O) showed about 40-fold induction of luciferase expression compared with cells in isoosmotic medium. The upstream fragment (from approximately base pair -3429 to base pair -192) also conferred osmotic response to a heterologous promoter (B19). This finding evidences putative osmotic response element(s) (OREs) within a specific DNA fragment in a eukaryotic genome. Identification and characterization of OREs within this fragment and their associated trans-acting factors should reveal the molecular mechanisms of gene regulation in osmotic stress.
doi_str_mv 10.1073/pnas.91.22.10742
format article
fullrecord <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_91_22_10742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2366106</jstor_id><sourcerecordid>2366106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-fd46dee0e97ad7d9e73e535a00b879c918c42cfedc751852e2197917aa179c6d3</originalsourceid><addsrcrecordid>eNqFkcFv0zAUxi0EGmVw5wAi4oB2WMqzE8e2xGWq2ECaVDTB2fKcly5VYne2g4C_HnftKsYBTvbT9_ue7O8j5CWFOQVRvd84E-eKzhnbzjV7RGYUFC2bWsFjMgNgopQ1q5-SZzGuAUBxCUfkSKhKAmMz8mUxeNe71Wlxgc6PvS2WYWVc_8uk3rvTwri2WMbRp6xcYdx4F7HwXZFusDgbWp-nK2wnm0y-5RX4nDzpzBDxxf48Jt_OP35dfCovlxefF2eXpeWMp7Jr66ZFBFTCtKJVKCrkFTcA11Ioq6i0NbMdtlZwKjlDRpVQVBhDs9y01TH5sNu7ma7HjKFLwQx6E_rRhJ_am14_VFx_o1f-u645KJnt7_b24G8njEmPfbQ4DMahn6IWjZA5KvVfkDZc5MirDL79C1z7KbicgWZAmZRUsQzBDrLBxxiwOzyYgt42qreNakU1Y_qu0Wx5_edHD4Z9hVl_s9e3znv14YaTfxO6m4Yh4Y-U0Vc7dB2TDweWVU1Doal-A5RBvm4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201288192</pqid></control><display><type>article</type><title>Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Ferraris, Joan D. ; Williams, Chester K. ; Martin, Brian M. ; Burg, Maurice B. ; Garcia-Perez, Arlyn</creator><creatorcontrib>Ferraris, Joan D. ; Williams, Chester K. ; Martin, Brian M. ; Burg, Maurice B. ; Garcia-Perez, Arlyn</creatorcontrib><description>Diverse organisms accumulate organic osmolytes to adapt to hyperosmotic stress. The molecular basis of eukaryotic gene osmoregulation remains obscure. Aldose reductase [AR; alditol:NAD(P)+1-oxidoreductase, EC 1.1.1.21], which catalyzes the conversion of glucose to sorbitol (an organic osmolyte), is induced in renal medullary cells under hyperosmotic conditions. Elevated extracellular NaCl increases AR mRNA transcription in PAP-HT25 cells, a cell line derived from the rabbit renal papilla. We have cloned and characterized the rabbit AR gene to determine how it is regulated by hyperosmolality. The length of the gene, not including 5' or 3' flanking regions, is approximately 14.7 kilobases (kb) organized into 10 exons and 9 introns. The transcription start site is 36 base pairs upstream of the initiator methionine codon. A 5-kb fragment containing approximately 3.5 kb of 5' flanking region was isolated. The 3.5-kb sequence was examined for basal promoter activity and hyperosmotic response in luciferase reporter gene constructs. A 235-base-pair fragment (base pairs -208 to +27) was able to drive the downstream reporter gene in transfected PAP-HT25 cells under isoosmotic conditions (300 mosmol/kg of H2O). When this fragment plus the remaining upstream sequence (from approximately base pair -3429 to base pair +27) was used, cells in hyperosmotic medium (500 mosmol/kg of H2O) showed about 40-fold induction of luciferase expression compared with cells in isoosmotic medium. The upstream fragment (from approximately base pair -3429 to base pair -192) also conferred osmotic response to a heterologous promoter (B19). This finding evidences putative osmotic response element(s) (OREs) within a specific DNA fragment in a eukaryotic genome. Identification and characterization of OREs within this fragment and their associated trans-acting factors should reveal the molecular mechanisms of gene regulation in osmotic stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.91.22.10742</identifier><identifier>PMID: 7938022</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Aldehyde Reductase - biosynthesis ; Aldehyde Reductase - genetics ; Aldehyde Reductase - physiology ; Animals ; Base Sequence ; Cell Line ; Cell lines ; Cloning, Molecular ; Deoxyribonucleic acid ; DNA ; DNA Primers ; Exons ; Genes ; Genetics ; Genomics ; Homeostasis ; Introns ; Kidney Medulla - enzymology ; Kidney Medulla - physiology ; Messenger RNA ; Molecular Sequence Data ; Nucleotides ; Osmolar Concentration ; Polymerase Chain Reaction ; Promoter regions ; Promoter Regions, Genetic ; Rabbits ; Reporter genes ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; Spleen - enzymology ; Transcription, Genetic ; Transfection</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1994-10, Vol.91 (22), p.10742-10746</ispartof><rights>Copyright 1994 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 25, 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-fd46dee0e97ad7d9e73e535a00b879c918c42cfedc751852e2197917aa179c6d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/91/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2366106$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2366106$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774,58219,58452</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7938022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferraris, Joan D.</creatorcontrib><creatorcontrib>Williams, Chester K.</creatorcontrib><creatorcontrib>Martin, Brian M.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><creatorcontrib>Garcia-Perez, Arlyn</creatorcontrib><title>Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Diverse organisms accumulate organic osmolytes to adapt to hyperosmotic stress. The molecular basis of eukaryotic gene osmoregulation remains obscure. Aldose reductase [AR; alditol:NAD(P)+1-oxidoreductase, EC 1.1.1.21], which catalyzes the conversion of glucose to sorbitol (an organic osmolyte), is induced in renal medullary cells under hyperosmotic conditions. Elevated extracellular NaCl increases AR mRNA transcription in PAP-HT25 cells, a cell line derived from the rabbit renal papilla. We have cloned and characterized the rabbit AR gene to determine how it is regulated by hyperosmolality. The length of the gene, not including 5' or 3' flanking regions, is approximately 14.7 kilobases (kb) organized into 10 exons and 9 introns. The transcription start site is 36 base pairs upstream of the initiator methionine codon. A 5-kb fragment containing approximately 3.5 kb of 5' flanking region was isolated. The 3.5-kb sequence was examined for basal promoter activity and hyperosmotic response in luciferase reporter gene constructs. A 235-base-pair fragment (base pairs -208 to +27) was able to drive the downstream reporter gene in transfected PAP-HT25 cells under isoosmotic conditions (300 mosmol/kg of H2O). When this fragment plus the remaining upstream sequence (from approximately base pair -3429 to base pair +27) was used, cells in hyperosmotic medium (500 mosmol/kg of H2O) showed about 40-fold induction of luciferase expression compared with cells in isoosmotic medium. The upstream fragment (from approximately base pair -3429 to base pair -192) also conferred osmotic response to a heterologous promoter (B19). This finding evidences putative osmotic response element(s) (OREs) within a specific DNA fragment in a eukaryotic genome. Identification and characterization of OREs within this fragment and their associated trans-acting factors should reveal the molecular mechanisms of gene regulation in osmotic stress.</description><subject>Aldehyde Reductase - biosynthesis</subject><subject>Aldehyde Reductase - genetics</subject><subject>Aldehyde Reductase - physiology</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell Line</subject><subject>Cell lines</subject><subject>Cloning, Molecular</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>Exons</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Homeostasis</subject><subject>Introns</subject><subject>Kidney Medulla - enzymology</subject><subject>Kidney Medulla - physiology</subject><subject>Messenger RNA</subject><subject>Molecular Sequence Data</subject><subject>Nucleotides</subject><subject>Osmolar Concentration</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Rabbits</subject><subject>Reporter genes</subject><subject>Restriction Mapping</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Spleen - enzymology</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNqFkcFv0zAUxi0EGmVw5wAi4oB2WMqzE8e2xGWq2ECaVDTB2fKcly5VYne2g4C_HnftKsYBTvbT9_ue7O8j5CWFOQVRvd84E-eKzhnbzjV7RGYUFC2bWsFjMgNgopQ1q5-SZzGuAUBxCUfkSKhKAmMz8mUxeNe71Wlxgc6PvS2WYWVc_8uk3rvTwri2WMbRp6xcYdx4F7HwXZFusDgbWp-nK2wnm0y-5RX4nDzpzBDxxf48Jt_OP35dfCovlxefF2eXpeWMp7Jr66ZFBFTCtKJVKCrkFTcA11Ioq6i0NbMdtlZwKjlDRpVQVBhDs9y01TH5sNu7ma7HjKFLwQx6E_rRhJ_am14_VFx_o1f-u645KJnt7_b24G8njEmPfbQ4DMahn6IWjZA5KvVfkDZc5MirDL79C1z7KbicgWZAmZRUsQzBDrLBxxiwOzyYgt42qreNakU1Y_qu0Wx5_edHD4Z9hVl_s9e3znv14YaTfxO6m4Yh4Y-U0Vc7dB2TDweWVU1Doal-A5RBvm4</recordid><startdate>19941025</startdate><enddate>19941025</enddate><creator>Ferraris, Joan D.</creator><creator>Williams, Chester K.</creator><creator>Martin, Brian M.</creator><creator>Burg, Maurice B.</creator><creator>Garcia-Perez, Arlyn</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19941025</creationdate><title>Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene</title><author>Ferraris, Joan D. ; Williams, Chester K. ; Martin, Brian M. ; Burg, Maurice B. ; Garcia-Perez, Arlyn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-fd46dee0e97ad7d9e73e535a00b879c918c42cfedc751852e2197917aa179c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Aldehyde Reductase - biosynthesis</topic><topic>Aldehyde Reductase - genetics</topic><topic>Aldehyde Reductase - physiology</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell Line</topic><topic>Cell lines</topic><topic>Cloning, Molecular</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>Exons</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Homeostasis</topic><topic>Introns</topic><topic>Kidney Medulla - enzymology</topic><topic>Kidney Medulla - physiology</topic><topic>Messenger RNA</topic><topic>Molecular Sequence Data</topic><topic>Nucleotides</topic><topic>Osmolar Concentration</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Rabbits</topic><topic>Reporter genes</topic><topic>Restriction Mapping</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Spleen - enzymology</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferraris, Joan D.</creatorcontrib><creatorcontrib>Williams, Chester K.</creatorcontrib><creatorcontrib>Martin, Brian M.</creatorcontrib><creatorcontrib>Burg, Maurice B.</creatorcontrib><creatorcontrib>Garcia-Perez, Arlyn</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferraris, Joan D.</au><au>Williams, Chester K.</au><au>Martin, Brian M.</au><au>Burg, Maurice B.</au><au>Garcia-Perez, Arlyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1994-10-25</date><risdate>1994</risdate><volume>91</volume><issue>22</issue><spage>10742</spage><epage>10746</epage><pages>10742-10746</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Diverse organisms accumulate organic osmolytes to adapt to hyperosmotic stress. The molecular basis of eukaryotic gene osmoregulation remains obscure. Aldose reductase [AR; alditol:NAD(P)+1-oxidoreductase, EC 1.1.1.21], which catalyzes the conversion of glucose to sorbitol (an organic osmolyte), is induced in renal medullary cells under hyperosmotic conditions. Elevated extracellular NaCl increases AR mRNA transcription in PAP-HT25 cells, a cell line derived from the rabbit renal papilla. We have cloned and characterized the rabbit AR gene to determine how it is regulated by hyperosmolality. The length of the gene, not including 5' or 3' flanking regions, is approximately 14.7 kilobases (kb) organized into 10 exons and 9 introns. The transcription start site is 36 base pairs upstream of the initiator methionine codon. A 5-kb fragment containing approximately 3.5 kb of 5' flanking region was isolated. The 3.5-kb sequence was examined for basal promoter activity and hyperosmotic response in luciferase reporter gene constructs. A 235-base-pair fragment (base pairs -208 to +27) was able to drive the downstream reporter gene in transfected PAP-HT25 cells under isoosmotic conditions (300 mosmol/kg of H2O). When this fragment plus the remaining upstream sequence (from approximately base pair -3429 to base pair +27) was used, cells in hyperosmotic medium (500 mosmol/kg of H2O) showed about 40-fold induction of luciferase expression compared with cells in isoosmotic medium. The upstream fragment (from approximately base pair -3429 to base pair -192) also conferred osmotic response to a heterologous promoter (B19). This finding evidences putative osmotic response element(s) (OREs) within a specific DNA fragment in a eukaryotic genome. Identification and characterization of OREs within this fragment and their associated trans-acting factors should reveal the molecular mechanisms of gene regulation in osmotic stress.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7938022</pmid><doi>10.1073/pnas.91.22.10742</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1994-10, Vol.91 (22), p.10742-10746
issn 0027-8424
1091-6490
language eng
recordid cdi_pnas_primary_91_22_10742
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Aldehyde Reductase - biosynthesis
Aldehyde Reductase - genetics
Aldehyde Reductase - physiology
Animals
Base Sequence
Cell Line
Cell lines
Cloning, Molecular
Deoxyribonucleic acid
DNA
DNA Primers
Exons
Genes
Genetics
Genomics
Homeostasis
Introns
Kidney Medulla - enzymology
Kidney Medulla - physiology
Messenger RNA
Molecular Sequence Data
Nucleotides
Osmolar Concentration
Polymerase Chain Reaction
Promoter regions
Promoter Regions, Genetic
Rabbits
Reporter genes
Restriction Mapping
Sequence Homology, Nucleic Acid
Spleen - enzymology
Transcription, Genetic
Transfection
title Cloning, Genomic Organization, and Osmotic Response of the Aldose Reductase Gene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A27%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloning,%20Genomic%20Organization,%20and%20Osmotic%20Response%20of%20the%20Aldose%20Reductase%20Gene&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ferraris,%20Joan%20D.&rft.date=1994-10-25&rft.volume=91&rft.issue=22&rft.spage=10742&rft.epage=10746&rft.pages=10742-10746&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.91.22.10742&rft_dat=%3Cjstor_pnas_%3E2366106%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c525t-fd46dee0e97ad7d9e73e535a00b879c918c42cfedc751852e2197917aa179c6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201288192&rft_id=info:pmid/7938022&rft_jstor_id=2366106&rfr_iscdi=true