Loading…

Discovery of Adrenomedullin in Rat Ischemic Cortex and Evidence for its Role in Exacerbating Focal Brain Ischemic Damage

Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a memb...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1995-12, Vol.92 (25), p.11480-11484
Main Authors: Wang, Xinkang, Yue, Tian-Li, Barone, Frank C., White, Raymond F., Clark, Robert K., Willette, Robert N., Sulpizio, Antony C., Aiyar, Nambi V., Ruffolo, Robert R., Feuerstein, Giora Z.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Focal brain ischemia is the most common event leading to stroke in humans. To understand the molecular mechanisms associated with brain ischemia, we applied the technique of mRNA differential display and isolated a gene that encodes a recently discovered peptide, adrenomedullin (AM), which is a member of the calcitonin gene-related peptide (CGRP) family. Using the rat focal stroke model of middle cerebral artery occlusion (MCAO), we determined that AM mRNA expression was significantly increased in the ischemic cortex up to 17.4-fold at 3 h post-MCAO (P < 0.05) and 21.7-fold at 6 h post-MCAO (P < 0.05) and remained elevated for up to 15 days (9.6-fold increase; P < 0.05). Immunohistochemical studies localized AM to ischemic neuronal processes, and radioligand (125I-labeled CGRP) displacement revealed high-affinity (IC50= 80.3 nmol) binding of AM to CGRP receptors in brain cortex. The cerebrovascular function of AM was studied using synthetic AM microinjected onto rat pial vessels using a cranial window or applied to canine basilar arteries in vitro. AM, applied abluminally, produced dose-dependent relaxation of preconstricted pial vessels (P < 0.05). Intracerebroventricular (but not systemic) AM administration at a high dose (8 nmol), prior to and after MCAO, increased the degree of focal ischemic injury (P < 0.05). The ischemia-induced expression of both AM mRNA and peptide in ischemic cortical neurons, the demonstration of the direct vasodilating effects of the peptide on cerebral vessels, and the ability of AM to exacerbate ischemic brain damage suggests that AM plays a significant role in focal ischemic brain injury.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.92.25.11480