Loading…
The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability
Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination w...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2001-04, Vol.98 (9), p.5122-5127 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3 |
---|---|
cites | cdi_FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3 |
container_end_page | 5127 |
container_issue | 9 |
container_start_page | 5122 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Jin, Yong Hwan Obert, Robyn Peter M. J. Burgers Kunkel, Thomas A. Resnick, Michael A. Gordenin, Dmitry A. |
description | Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand. |
doi_str_mv | 10.1073/pnas.091095198 |
format | article |
fullrecord | <record><control><sourceid>jstor_pnas_</sourceid><recordid>TN_cdi_pnas_primary_98_9_5122_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055575</jstor_id><sourcerecordid>3055575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3</originalsourceid><addsrcrecordid>eNp9kUFu1DAUhi0EokNhywqQV-wytRM7tiU2VTtTKlW0grK2HMeZpk3ske1UHVaseoBegx3iHByiJ8FhhilsWL1n_9__nuUfgJcYTTFixd7SqjBFAiNBseCPwCR1OCuJQI_BBKGcZZzkZAc8C-ESoURx9BTsYFykFuUT8O38wsDi_uv3-9s7mgqc3Tg76M6oYKBr4OGHfXjmulVv_Hjz8wfUysJPQxViG4doYOM8jGnGb_O8U0s4s_XDiI-qztne3FgMWwvPvNMmhNYu4OmV-qKuWjj3atEbGwNUtk6AuU6HETgy1vUGHtsQVdV2bVw9B08a1QXzYlN3wef57PzgfXZyenR8sH-SaUJ5zFTJdakKwUuqq0YTYoRiDTNEl4ITTlnFWJ7zRjBMiEi_Rsoq17luUGkwN3WxC96t5y6Hqje1Tg_yqpNL3_bKr6RTrfxXse2FXLhrWRSYkWSfru3auxC8abZOjOQYmhxDk9vQkuHN3_se8E1KCXi9AUbjH1lwKSTF-ai__Z8um6HrormJCXy1Bi9DdH5LFohSymjxCxqnuvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Jin, Yong Hwan ; Obert, Robyn ; Peter M. J. Burgers ; Kunkel, Thomas A. ; Resnick, Michael A. ; Gordenin, Dmitry A.</creator><creatorcontrib>Jin, Yong Hwan ; Obert, Robyn ; Peter M. J. Burgers ; Kunkel, Thomas A. ; Resnick, Michael A. ; Gordenin, Dmitry A.</creatorcontrib><description>Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.091095198</identifier><identifier>PMID: 11309502</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Alleles ; Amino Acid Transport Systems ; Amino acids ; Biological Sciences ; Chromosomes, Fungal - genetics ; DNA ; DNA Polymerase III - genetics ; DNA Polymerase III - metabolism ; DNA Repair - genetics ; DNA Replication - genetics ; Endodeoxyribonucleases - deficiency ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Exodeoxyribonucleases - deficiency ; Exodeoxyribonucleases - genetics ; Exodeoxyribonucleases - metabolism ; Flap Endonucleases ; Fungal Proteins ; Gene Deletion ; Gene Duplication ; Genes, Lethal - genetics ; Genetic Complementation Test ; Genetic mutation ; Genome, Fungal ; Genomes ; Kinetics ; Membrane Transport Proteins - genetics ; Multienzyme Complexes - deficiency ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Mutagenesis - genetics ; Phenotypes ; Plasmids ; Proofreading ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae Proteins ; Viability ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-04, Vol.98 (9), p.5122-5127</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3</citedby><cites>FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055575$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055575$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11309502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Yong Hwan</creatorcontrib><creatorcontrib>Obert, Robyn</creatorcontrib><creatorcontrib>Peter M. J. Burgers</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><creatorcontrib>Resnick, Michael A.</creatorcontrib><creatorcontrib>Gordenin, Dmitry A.</creatorcontrib><title>The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.</description><subject>Alleles</subject><subject>Amino Acid Transport Systems</subject><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Chromosomes, Fungal - genetics</subject><subject>DNA</subject><subject>DNA Polymerase III - genetics</subject><subject>DNA Polymerase III - metabolism</subject><subject>DNA Repair - genetics</subject><subject>DNA Replication - genetics</subject><subject>Endodeoxyribonucleases - deficiency</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Exodeoxyribonucleases - deficiency</subject><subject>Exodeoxyribonucleases - genetics</subject><subject>Exodeoxyribonucleases - metabolism</subject><subject>Flap Endonucleases</subject><subject>Fungal Proteins</subject><subject>Gene Deletion</subject><subject>Gene Duplication</subject><subject>Genes, Lethal - genetics</subject><subject>Genetic Complementation Test</subject><subject>Genetic mutation</subject><subject>Genome, Fungal</subject><subject>Genomes</subject><subject>Kinetics</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Multienzyme Complexes - deficiency</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Mutagenesis - genetics</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Proofreading</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Viability</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp9kUFu1DAUhi0EokNhywqQV-wytRM7tiU2VTtTKlW0grK2HMeZpk3ske1UHVaseoBegx3iHByiJ8FhhilsWL1n_9__nuUfgJcYTTFixd7SqjBFAiNBseCPwCR1OCuJQI_BBKGcZZzkZAc8C-ESoURx9BTsYFykFuUT8O38wsDi_uv3-9s7mgqc3Tg76M6oYKBr4OGHfXjmulVv_Hjz8wfUysJPQxViG4doYOM8jGnGb_O8U0s4s_XDiI-qztne3FgMWwvPvNMmhNYu4OmV-qKuWjj3atEbGwNUtk6AuU6HETgy1vUGHtsQVdV2bVw9B08a1QXzYlN3wef57PzgfXZyenR8sH-SaUJ5zFTJdakKwUuqq0YTYoRiDTNEl4ITTlnFWJ7zRjBMiEi_Rsoq17luUGkwN3WxC96t5y6Hqje1Tg_yqpNL3_bKr6RTrfxXse2FXLhrWRSYkWSfru3auxC8abZOjOQYmhxDk9vQkuHN3_se8E1KCXi9AUbjH1lwKSTF-ai__Z8um6HrormJCXy1Bi9DdH5LFohSymjxCxqnuvA</recordid><startdate>20010424</startdate><enddate>20010424</enddate><creator>Jin, Yong Hwan</creator><creator>Obert, Robyn</creator><creator>Peter M. J. Burgers</creator><creator>Kunkel, Thomas A.</creator><creator>Resnick, Michael A.</creator><creator>Gordenin, Dmitry A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20010424</creationdate><title>The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability</title><author>Jin, Yong Hwan ; Obert, Robyn ; Peter M. J. Burgers ; Kunkel, Thomas A. ; Resnick, Michael A. ; Gordenin, Dmitry A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alleles</topic><topic>Amino Acid Transport Systems</topic><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Chromosomes, Fungal - genetics</topic><topic>DNA</topic><topic>DNA Polymerase III - genetics</topic><topic>DNA Polymerase III - metabolism</topic><topic>DNA Repair - genetics</topic><topic>DNA Replication - genetics</topic><topic>Endodeoxyribonucleases - deficiency</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Exodeoxyribonucleases - deficiency</topic><topic>Exodeoxyribonucleases - genetics</topic><topic>Exodeoxyribonucleases - metabolism</topic><topic>Flap Endonucleases</topic><topic>Fungal Proteins</topic><topic>Gene Deletion</topic><topic>Gene Duplication</topic><topic>Genes, Lethal - genetics</topic><topic>Genetic Complementation Test</topic><topic>Genetic mutation</topic><topic>Genome, Fungal</topic><topic>Genomes</topic><topic>Kinetics</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Multienzyme Complexes - deficiency</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Mutagenesis - genetics</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Proofreading</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Viability</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yong Hwan</creatorcontrib><creatorcontrib>Obert, Robyn</creatorcontrib><creatorcontrib>Peter M. J. Burgers</creatorcontrib><creatorcontrib>Kunkel, Thomas A.</creatorcontrib><creatorcontrib>Resnick, Michael A.</creatorcontrib><creatorcontrib>Gordenin, Dmitry A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yong Hwan</au><au>Obert, Robyn</au><au>Peter M. J. Burgers</au><au>Kunkel, Thomas A.</au><au>Resnick, Michael A.</au><au>Gordenin, Dmitry A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-04-24</date><risdate>2001</risdate><volume>98</volume><issue>9</issue><spage>5122</spage><epage>5127</epage><pages>5122-5127</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many DNA polymerases (Pol) have an intrinsic 3′→5′ exonuclease (Exo) activity which corrects polymerase errors and prevents mutations. We describe a role of the 3′→5′ Exo of Pol δ as a supplement or backup for the Rad27/Fen1 5′ flap endonuclease. A yeast rad27 null allele was lethal in combination with Pol δ mutations in Exo I, Exo II, and Exo III motifs that inactivate its exonuclease, but it was viable with mutations in other parts of Pol δ. The rad27-p allele, which has little phenotypic effect by itself, was also lethal in combination with mutations in the Pol δ Exo I and Exo II motifs. However, rad27-p Pol δ Exo III double mutants were viable. They exhibited strong synergistic increases in CAN1 duplication mutations, intrachromosomal and interchromosomal recombination, and required the wild-type double-strand break repair genes RAD50, RAD51, and RAD52 for viability. Observed effects were similar to those of the rad27-null mutant deficient in the removal of 5′ flaps in the lagging strand. These results suggest that the 3′→5′ Exo activity of Pol δ is redundant with Rad27/Fen1 for creating ligatable nicks between adjacent Okazaki fragments, possibly by reducing the amount of strand-displacement in the lagging strand.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11309502</pmid><doi>10.1073/pnas.091095198</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-04, Vol.98 (9), p.5122-5127 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pnas_primary_98_9_5122_fulltext |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Alleles Amino Acid Transport Systems Amino acids Biological Sciences Chromosomes, Fungal - genetics DNA DNA Polymerase III - genetics DNA Polymerase III - metabolism DNA Repair - genetics DNA Replication - genetics Endodeoxyribonucleases - deficiency Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Exodeoxyribonucleases - deficiency Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Flap Endonucleases Fungal Proteins Gene Deletion Gene Duplication Genes, Lethal - genetics Genetic Complementation Test Genetic mutation Genome, Fungal Genomes Kinetics Membrane Transport Proteins - genetics Multienzyme Complexes - deficiency Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Mutagenesis - genetics Phenotypes Plasmids Proofreading Recombination, Genetic - genetics Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins Viability Yeasts |
title | The 3′→5′ Exonuclease of DNA Polymerase δ can Substitute for the 5′ Flap Endonuclease Rad27/Fen1 in Processing Okazaki Fragments and Preventing Genome Instability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pnas_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%203%E2%80%B2%E2%86%925%E2%80%B2%20Exonuclease%20of%20DNA%20Polymerase%20%CE%B4%20can%20Substitute%20for%20the%205%E2%80%B2%20Flap%20Endonuclease%20Rad27/Fen1%20in%20Processing%20Okazaki%20Fragments%20and%20Preventing%20Genome%20Instability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jin,%20Yong%20Hwan&rft.date=2001-04-24&rft.volume=98&rft.issue=9&rft.spage=5122&rft.epage=5127&rft.pages=5122-5127&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.091095198&rft_dat=%3Cjstor_pnas_%3E3055575%3C/jstor_pnas_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c458t-a68c6a39865cbfc44e9a7f7e4c6984857b77228f97144919846b2c2cf06e18ed3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11309502&rft_jstor_id=3055575&rfr_iscdi=true |